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INTRODUCTION.

THE Doctrine of Limits is now very generally adopted as

the basis of the Differential and Integral Calculus.

Of the methods which were formerly in use it may be

advantageous to the mathematical student to glance at some

of the most prominent.

By inscribing successively in a circle, regular polygons of

four, eight, sixteen, thirty-two, &c. sides, we may at length

.suppose a polygon to be inscribed whose area shall be less

than that of the circle by a quantity so small as to be unas-

signable. In this manner the area of the circle may be said

to be exhausted. Hence, the method which was based upon
this mode of operation was termed the Method of Ex-

haustions.

In the early part of the seventeenth century a work was

published, in which all quantity was assumed to be composed

of elements so small that it would be impossible to divide

them. An infinite number of points in continued contact

were supposed to form a line, an infinite number of lines to

form a surface, and an infinite number of surfaces to form a

solid. Now, since a line has magnitude, namely, length,

and a point has no magnitude, it is obvious that a line

cannot properly be considered to be made up of a series of
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points. The method founded upon these suppositions is

consequently objectionable. Cavalerius, the inventor of it,

called his work " Geometria Indivisibilibus ;" and hence this

method was styled the Method of Indivisibles.

Sir Isaac Newton considered all quantity to be generated

by motion
;
a point in motion producing a line, a line in

motion producing a surface, and a surface in motion pro-

ducing a solid. This motion or flowing of a point, a line,

and a surface, gave rise to the terms fluents and fluxions :

the quantity generated by the motion being called thefluent

or flowing quantity, and the velocity of the motion, at any

instant, ihejlitxion of the quantity generated at that instant.

The method founded upon these considerations has been

long known as the Method of Fluxions.

As applications of this method are continually met with

in mathematical works, it may not be inappropriate to give

a few instances of its notation, compared with that proposed

by Leibnitz, and now generally adopted by writers on the

Differential Calculus :

1

, , ii, ii, u, sin x, {(x
2

I)"
1

} .

du, d2
u, d s

u, d*u, dnu, dsmx, dn (x*l}
m

.

The fluxional symbols in the first line are placed exactly

over the corresponding differential symbols in the second.

Leibnitz considered every magnitude to be made up of an

infinite number of infinitely small magnitudes. His mode of

reasoning was as follows. Any quantity u consists of an infi-

nite number of differentials, each equal to pli+ qh
2+ rh?+ &c.,

and h being infinitely small, each term in the series is infi-

nitely less than the next preceding term, and consequently

the sum of the terms after the first is infinitely less than
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that first term. Hence ph is the only term necessary to be

retained to represent the series.

Lagrange, in his " Calcul des Fonctions," endeavoured to

simplify the subject by rejecting the consideration of infi-

nitely small differences and limits, referring the Differen-

tial Calculus to a purely algebraic origin. He defined the

differential of a quantity to be the first term of the series

ph+qh2
-)-rh

s+ &,c. This is the foundation of his theory.

Each of these methods has found numerous advocates

among mathematicians, a fact which excites no surprise

when we consider the extraordinary genius of the great men

whose names are associated with the origin of these various,

and most interesting theories.

In our own day several highly talented men have directed

their attention to this subject, and it seems now to be very

generally admitted that the method best adapted to ele-

mentary instruction is that founded on the Doctrine of

Limits.

Among the valuable works which have recently enriched

this subject may be mentioned those of Whewell, Hall,

O'Brien, De Morgan, Thomson, Young, Price, and Walton,

in our own language, and Duhamel, Cauchy, Moigno, and

Cournot, in the French.

Let us suppose a certain magnitude u to be dependent

for its value upon some variable magnitude x, so that the

value of u may be represented by some expression into which

x enters, then u is a function of x. We will assume, for

instance, that u=a?, and, in this simple example, supposing
x to undergo a change of value, we will trace the corres-

ponding effect produced upon the function u.

Let x take the increment h, that is, let x change its value

A 2
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and become x+ h, then if we represent the corresponding

value of u by M,, we shall have

.'. u, u= 3 xzh + 3 xk2+ h3= corresponding increment of u,

U ~~~ U
-1 =3x2+ 3xh+ h*= ratio of increment of function to
a

increment of variable.

Now the first term of this expression for the ratio being

3#2
,

it is obvious that h may undergo any change of value

whatever, without affecting this first term.

Let h then continually decrease in value until it is=0,

then the expression for the ratio will be simply 3x2
.

Hence this first term is the limit towards which the ratio

approaches as h is diminished, and which limit the ratio

cannot reach until 7*= 0.

Now if if=.a?, du=3x2
'dx, -~=3x2

, where du is
dx

the differential of u, dx the differential of x, and -- the
dx

differential coefficient derived from the function, that is the

coefficient of dx. Thus the limit 3 x2 is equal to the differen-

tial coefficient.

These remarks are offered to the reader in this place, not

only with a view to remind him of what the Method of

Limits is, and to regard it in its connexion with the methods

above alluded to, but also in the hope of inducing him con-

stantly to recollect that, when he is performing that veiy

common operation in the Differential Calculus of ascertaining

the differential coefficient, he is virtually seeking the limit of

the ratio of the increment of the function to the increment

of the variable.



EXAMPLES

DIFFERENTIAL CALCULUS.

CHAPTER I.

DIFFERENTIATION OF FUNCTIONS OF ONE VARIABLE.

Ex. (1.) Let u=-ax. Then -=a.
dx

(2.) Let M=a+ 4ar. Then =4.
dx

(3.) Let y=3ax2+l2
. Then -=^=2 x 3aa?=6a<r.

(4.) Letu=V5. Then =

(
5

->
Let M=-

2
. Then-=

(6.) w=

.t-+ 1 (to8
).
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(7.) =(!+#)

(8.)
u=(a?+a)(3x

âa

(9.) w=(a+ J#m)
n

.

^=w(a+5^)
da;

(10.)
=

(11.) u=\/a;+V'l+a?. Squaring, we have

/ .. o i( />

=1+-
rf 2vl+x2

x
1+ 1+-

\/ o?+ Vl + a;
2



OF ONE VARIABLE.

sc

(12.) = 7==-- Multiplying both numerator and
Va?+x2

a;

denominator by '/a2+x2
+x, we have

du 1
.

dx a2 1 2>/a2 +a?

__
) a2 a2 \/a;2+a

(13.) u=(a+x)(b+x)(c+x).

=(6+ *)

(14.) M=

+ (1 + . w (1 +#m

xn
)
m~\ {(1
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>=\a--
V x Vx

First,
dx

2

x
+

3

i*

=
dx 4 3(c2-a;

2
)

/

V --
v a?

(16.)
=-
x+Vlx2

du

dx

a?

l-x2

2x(l

(17.) u= &c. in inf.

&c. in inf.
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du du
_=1+ ,

dx dx

du
l

dx
=1

'

du
"
dx 2u 1'

But VM2 M=

T 2

u--=-
,
2u 1=

1

(18.) =! +

1-f
<fec. in inf.

du du
-T---r-
dx dx

\\
du

--(~ ij

2u l=

du\

4a?+l

2~ 2

1

dx

(19.) 2wa34-aM2 bx2=0. This is an implicit function.

rfw C?M _
7

. du du
u+ 2x-- -2aU'----2bx=0, u+ x + au--- fjx=

dx dx dx dx

. du du Ix u
(au+x)'=bxu, '-}-=

-
' dx dx au+ x

B 2
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But Y t>3? ux=

bx u u
"
au-\-x x

(20.) u=

(21.) um+ nx.

(22.) u=c-2x*.

(23.) u=2x2-3x+Q.

(24.) =4o3-

(25.) =(

(26.) =v/

(27.) u=(-l

(28.) M=

(29.) ={ S

du

dx

(30.) a

/-
(31.) u=(l+x)Vl-x

x3

\ ' /7-\ o\9

(bx it) %=(au-\-x) u.

du u
'

dx x

dx

dx

dx

dx

dx

dx

1

dx

du Sx2



OF ONE VARIABLE. 7

X dll 2x2 +l
(33.)

"= =- 2-
v a^+ 1 + x dx V x2 + 1

(34.) u=
* ' * ""

|- Vie ^/a; 2(1 +v a;)
vce a;

2

(35.) u=(ax*+ l)
2+ (x-l)</a

2-x2
.

du 8$ 3aa? Ix2

3a dx 3a 2 /axx2

du_-g4(a
2-2x2

)

dx 2x2(a2 x2}?

(x-\-aft du 3 /x4-a 1 / /C+a\ 3

38.) =)
C- -=- A/ - - -- A/ (- -)/ rp _____ ft \ 2 /V/V V T '>' XI V T \ T1 / /

I IAS
^^ C* I '/ if. . nC ~~~

C -^ x */^^ C*'

(36.) ?<= -xVaa; ic
2

.

(37.)
=

. _ . ~ , ^ -a; du 2x
(^) u

x dx \x2+I .
(
Va?l + x)

2

du

va x dx 6(a
2+x2

}%.(a a;

(41.) u=x(a
2

CiOC *v (J
^ CT

(42.) M=A/2a; 1 \/2x 1 vlx^T &c. in inf.

(43.) u-

rfa; v8a; 3

1
^" ^ x/l_4cn

1 &c. in inf.



(44.)
=

TRANSCENDENTAL FUNCTIONS

2X2

CHAPTER II.

TRANSCENDENTAL FUNCTIONS OF ONE VARIABLE.

du
i=sinx :

u=cosx ;

=cosox

= sin or.

dx

du

dx

= 1 -}-tan
2a;=sec2a;= ^-dx cosmic

w=cot x ; -r-= (1 +cot2
) = cosec2o;= T-TT-dcc ^i TI *"~p

=seca;: -^-= sec x. tana.

w:=cosec x ; ^-
= cosec x. cot x.

du
w=v. sin x : -r-=sin x,

dx

du a
w=logacc: --=-.

dx x

_ ^ du_~
dx~

T? /i \ T 4. 2 rm, o .

Ex. [1.1 LetM=sm^a;. Tnen-7-=2sina;. ;
=2smaj.cosaj.

dx dx
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(2.)
?*=icos mx. i.e. the cosine of the product of

m and x.

du dcosmx dmx= = suimx. 5
= msmmx.

ax ax ax

(3.) =sin%. cos^r.

du dcosx dsm3x
-7-=: Sin

AX.
; 1- COS X.

;

dx ax doc

= sin 3#.
( sin#) + cos#. 3sin 2#. cos a?

= 3 sin2# cos2a? sin%= sin2d? (3

= sin2^r (3.1 sin% sin2^)
= sin2^ (3 3 sin2^ sin2#)

= sin ^x (3 4 sin 2
#) .

(4.) u=<^. cosx, e being the base of the Napierian

system of logarithms.

du_ x dcosx; dex

dx dx . dx

(5.)

dx dx dx
cCOBX=x^coax

[

(6.) wi.^l-.
cosnx

du cosnx.msuim- 1x.coax sinw#.cosn-'tf( simr)
"// 2w

_
cos"- lx cosn+ lx
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(7.) u=cos~ lx v 1 x2
. This is an inverse function.

Puttfv 1 x2=z. Then u= cos~ lz ; :.cosu=z;

1 1

sin w

1

du
_
du 1

~~ S1H W '

JL
~ ""* ^^ ^^ " * * " "' ^ *~^

rfz <#

dz x
x
_
l i

rftt </M ?^r

Hence = =
dx dz dx

Vl-x* ^/T^x*

1 1-2*2

l

(8.) M=a(sin#

=a (cosa;+sin^). Squaring, we have

in 2
a: 2 sin#cos;r)=a

2
(l 2

du du dz n mn (losaf>

)
m~ 1

Hence = . =m;zrn- 1 .-=- -2 -

dx dz dx x x

(9.) =(loj

Put ^ for logo?
1

,
then w=^m

,
.

<

.^=m^m
-

1

rf^r

and v^=
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J\
(10.) logw=-

(12.) M_

du 1_ vl-f-#2 api^x? __i

dx u x2

f
du u

dx aP^l+x2

(11.) w=aretan
"" 1

*.

log M=log x+ tan-1 #. loge

=loga?+tan~
1
ir, vloge=l,

du 1 1 1

_._=_+

2+l

Since the denominator is constant, and since the differen-

tial coefficient of e
ax

is ae"*,

du 1

"|-=~3 rjae^asina; cosx)-}-e
a
*(acosx+sinx)}dx u "T" 1.

-f~

= e *. sino?.
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/io\ i

(13.) U=log=--
v a v x

(Va Sx
~

du

dx (va */~xf

v a v^+ va+ \/^ 2 v a va

(U.) tt="+
'.

log W= C*'I+ *. log a.

log (log u) =(a?+x) log c+ log (log a).

., dz 1 1
=log H, then- = =-

JM u ac*
+ ''

log z=(a^+a:) log c+ log (log a),

-r^.-=logc(2#+l). But *=c*1+ *. log a,
a# z

:.=z. logc (2ir+l)=loga. logc. c*'+*. (2^-f-l).

?M </^r rfw +*Hence -=-=- ^^loga. logc. aT . c* +x
. (2x+l).dx dx dz

nf.\ / T du / T
(lO.j M= sin^v 1 cos#. ^^cosa?v l-f-sma*.

. 4 {/iP

(16.) M=cos(sin;r). = cos^sin (sina;).

/-l IT \
c;in~

1^ A/~2 15
<* </iF

(18.) u=<'
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1 a?
2

(19.) M== sin-
1

TT^.
du

dx

(20.) M=sin~ 1

(21.) u=

(22.) u=cot-l

(mx+a)
2

.

V\ x

du

&c.

du 2m(mx+a)

fbx+a du vb a
(24.) M=tan~ 1 A/ =

,

v b a dx 2(l+#) v 6#-|-a

(25.) w=v/
T3^2_|_ sin-

1
.y. ^= A/l^-ax V 1 + #

^7,, Q

(26.)
=

(27.) u=

(28.) w=si

(29.) =log-

(30.) w=(log)a?.
ow

du I 1

cSr a: A/1 + a?
2

1

* This expression means the mth
logarithm of x, not the wth

power of

the logarithm of x. Log (log a;), which means the logarithm of the

logarithm of x, might be written (log)
s
a;.
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(31.) u=logxlog (a Vd* a?).
=--

7--
dx xva^

/, /
-

(32.) u=\og v sin#+logv cosx.

(33.) u=log{x+ x1 a2
}

(34.) w=log

(35.) u=yf.

(36.) u=a l s

1 -.

a

du

du
=eot2x.

dx xv x a

du a l s*. logo.=-
dx x

(37.) u=a*.

(38.) u=x siax
.

(39.) u=ea*cosrz.

(40.) u=xeiaa
~

*.

\_

(41.) ux1 '

V* V V /

(43.) =**y

du /snx \
^sm

*(
--\-cosx. logx)

-

\ w

fJftjT

-j-
=ea

*(a cosrxrsin rx~).

du 1 I, te
-r='xxlog(-dx x2 \x

du_
cfcc logo: (log)

J
o; . . .

(44.) w=ytan^
ra

, ^ being a function of x.

du dy
-}-=tan#

w~
dx dx

~+ nyx*
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(45.) u=zvV
, z, v, and y being functions of x.

du r, dy ?/ _ dv 1 dz\
-=^zvv

. vy\logz.logv-^ |-- log.?-: I

----
}

dx \

' ' dx v
' dx z dx\

(46.) u=xz+ sinz-\-az cosz

du /2a x

dx \ x

CHAPTER III.

SUCCESSIVE DIFFERENTIATION.

Ex. (1). Let u=xn
.

Differentiating, we obtain ihejfirst differential coefficient,

du~nxn-1
.

dx

Differentiating, we obtain the second differential coefficient,

Differentiating as before, we have the third,

ft ?/

"=n fn-l)(n-2)x
n-3

.

dx6

dru

It must be borne in mind that d2
u, d3

u, d4
u, &c. dru are

merely symbols ; and that dx2, da?, dx4
,

kc. daf are powers

of dx.
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(2.) u=logx.

du\ d2u I d3u 2

^%__2-3 d5
o?_2-3-4

JA A >
'

7 K IS '
'

(3.) u=af.

,. , . drU . I 7T\

(4.) tt=.sinw#.
-y

=wrsin( w^r+r 1

(Lyf \ ^/

r/4?/

(5.; =.

- 24~

Leibnitz's Theorem, which, is useful in finding the diffe-

rential coefficient of the product of two or more simple

functions, may be thus enunciated, u and v being both func-

tions of x,

dr
(uv) dru dvdr~lu r(r l)d*vdr-*uv ' *__\ _ __I

v_'_ _ _ __i_ ,,'

dxr
'

dxr dx dx r~ 1-2 do?

CHAPTER IV.

TAYLOR'S THEOREM.

This theorem may be thus enunciated.

If u=f(x), and x take the increment Jt,

du d^^_ d*u _&_ dnu h

+ &c.
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This theorem, written according to the notation of

Lagrange, is

h2 Ji
z

In using it, if we take n terms of the series, the error we

shall commit by leaving out the terms beyond the wth
,
will lie

hn
between the greatest and least values of/'"'(# -f #/)-: ^5- >

\. ' 2i" o . ..n

which values will depend upon giving to 6 various values

between (0) its least value, and (1) its greatest.

Maclaurin's Theorem is easily d'educible from this.

Ex. (1.) Expand cos (oc+ Ji) in a series of powers of h.

du d 2u dzu
LetM=cos#, then -= sm#, -r-^= cos#, -s=sin#, &c.

dx dx2 da?

Whence, substituting these values of u, > &c. in Taylor's
CLOG

theorem, we have

h2 '

h3

cos(#+ A)= cos# sin#. h cosa;- -+ sm^r- --\- &c.
i A 1*4*0

Cor. By making a?=0, we have

h2 h4-

(2.) Expand sin
]

(ar+A), according to ascending powers

of A,

Let w=sin~ 1

#, then = =
(1 tf

2
)"

1

*,
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Whence, by substitution in the theorem,

(!-*)* 8(1-**)*

2*2)
H-----+ <fec.

2.3(1-^)5

(3.) Expand log (#+ A) by Taylor's theorem.

<*w 1 d2u 1 J% 2
Let =log*, then-=-, ^=- -,, _=_, &c.

Whence, by substitution,

h h2 hs

(4.) If u=f(a;), show that

on \_ du a? d2u~' +

da* 2-3(l+a;)
3

x

+ &c.

7,3 _
'

'

Substituting these values in Taylor's theorem, we have

/ x \_ du a? d2u x*~ ~'~
d3u a?

+

J
(5.) If/(#)=tan~\r, and we put



EULER'S FORMULAE.

or rlx=^y, then, tan" 1^+ A)=tan~
1
a?+ siny siny

-
m

,
h*

,
A3

sin2y sm
2
y + sm3y sm^y -- &c.

J o

Now, since h may have any value whatever, put A= x,

y being an arc in the first quadrant ;
then

T* '7*^ ^Z/

^= siny siny
-+ sin2y sin2y - + sin 3y sin3y + &c.

But tan~J^=K y, and xcoiy=
jj smy

:. -^y+ siny cosy+ - sin 2y . cos2y+- sin3y cos3y+ &c.
2 23
Similarly, putting h= (x-\ )

= --
:
--

,
we

\ tff smy cosy
have

smy cosy

TT sin?/ 1 sin2?/ 1 sinSy_ "
I___'___

|

__
I &c.

2 cosy 2 cos 2
y 3 cos3y

And, putting /<= A/1 + tf
2
,

-sin2y+-si

Hence, by differentiation,

+ cosy+ cos2y+ cos3y+ &c.^ 0.
2

These formulse are deductions of Euler's.

Taylor's theorem may be applied to find approximate roots

of equations of the higher degrees.

(6.) Show that Taylor's theorem comprehends the Bino-

mial theorem.

(7.) Expand sin (#+/*) by Taylor's theorem.

h h2 h*
'_

1
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(8.) Show, by Taylor's theorem, that

(9.) Show that tan(#+/<)=tan#+sec
2#-

h hz

+ 2 sec2# tan# - + 2 sec2o? ( 1 + 3 tan2#) + &c.
1 Z 1 2i ' o

(10.) IfM=cot^, show that

A A2

= M sinu sinw- + sin2w sin2w -- &c.

(11.) Iff(x)= , prove
1 x

that

h h2 A3

r,+7T V.+TT

CHAPTER V.

MACLAURIN'S THEOREM.

This theorem, which is used for the development of a

function according to the ascending powers of the variable,

may be thus enunciated, U
, U^ Ua ,

U3 ,
&c. representing

du d2u d3u
the values of u, -, -, -^, &c. when x=Q,

dx dx2 da?

= u,+ u,x+ ir,.^+ f, + ^.j-^+fa.

co, =

This theorem was first given in Stirling's
" Linese Tertii
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Orclinis Newtonianse." It is, however, generally attributed to

Maclaurin, and is improperly styled
" Maclaurin's Theorem."

Ex. (1.) Expand (a+ x)
n
,
n being any number whatever,

positive or negative, integral or fractional, rational or

irrational.

~Leku=(a+x)
n
,
whence ifa:=0, U =an

.

fly/

ax

UtXs

&C. &C.

uU
Substituting these values of Z7

,
Ul} &c. for u, ,

<fcc.

CRv

in Maclaurin's theorem, we have

n(n 1) n(n l)(w 2)
(a+ x)

n=an+ nan-^x+-^ - an
~V+ -^--

^-\
--V~V

'2 2i -o

+ &c., which is the Binomial Theorem.

(2.) Develop a*.

Let u=ax
,
whence if^=0, U =a=l.

^=*Aa*, ..... Ui = A.
ax

V, = A*.

U = #.

* A is here put for the hyp. log. of base a, that is, for the expres-

sion (a- 1)
- i- (a- 1)

2 + J (a- 1)
3- &c.

- o
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Whence, by substitution in Maclaurin's theorem,

which is the Exponential Theorem.

: A=loga, :.a*=I+x\oga+-(xloga')
2+(x\oga)3+&c.

When x=l, a=l+loga+ -(loga)
2+ (loga)

3+ &c.

an expression for any number a, in terms of its Napierian

logarithm.

If for a we write the Napierian base e, we have, since

a? a?

And, when a?=l,

c=l + l +i+J_+&c.=2-71828 &c.
A Z O

(3.) Expand tan" 1^ by the method of indeterminate coef-

ficients,

t=tan~ 1

;j?,
whence if tf=0, Z7 =tan~10=0.

~7-=
TJ

-^== ^ a^+d?4 aP+ kc., by actual division.

But (Maclaurin's Theor. Cor.),

Equating coefficients of like powers of x, we have

^=1, ?72=0, U3=-2, Z74=0,.Z75=2.3.4, &c. ;
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2a? 2 3 4^
whence by substitution, ux -f - &c.

a? a? a?
:. tan lx=x + + &c.

o o 7

-
1

--=
o o 7

which is an expression for the arc, in terms of its tangent.

By help of this and Machin's Formula, we may find an

approximate expression for the length of the circumference

of a circle.

Let tana=-, J.=4a, then _4=4 tan" 1

;o o

4 4

4tana-4tan3a 5 125 _120
~l-6tan2a+tan%~I 6 T~Il9'

25
+
625

120

tan4-l 119 1
NowtanM 45)= =- = 7̂ 7r,J tan^ + i 120 239'

+

/. 45 =A tan"1

77^' or -= 4tan'1 - tan~"
239 "4- 5 239

1 * 1
, ^ \

3(5)3~
1

"5(5)5 7(77^
'C
7

1 !
\

-&C.J,
^239 3(239)

3
^5(239)

5

This is Machin's Formula.
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a very convergent series, by which, taking seven terms in

the first row, and three in the second, we obtain

7r=3- 141592653589793,

which is the approximate length of the semicircle, the radius

being unity. By taking three terms in the first row, and

one in the second, we obtain 7r=3'1416, an approximation

sufficiently near for ordinary purposes.

(4.) Expand secx, in ascending powers of x.

Put =sec#, whence if #=0, sec#=l,
r =l.

=secartanar, ...... tana-=0, ^=0.
ax

d2u
-j
= secx( 1 + tan2a?) + tanx secx tanx

u

-r-j=secor tana;+ 2 seca:. 2 tan#(l + tan2^) + 2tan2.r seca? tana;

=5 secx (1 + tan2
ic) -f 5 tana? sec# tana?

(Ji*X/

+ 6 seca? . 3 tan2j-(l + tan2^) + 6 tan3 a; sec a: tana?

=5seca?+28seca?tan2a;+24seca;tan
4
a:, . . ?74=5.

Whence, by substitution,

2^ 4
.

(5.) Expand cos3a;.

Put u=coss
x, whence if a;=0, cos3a;=l, . Z7 =l.

-=3cos2
ir( sina^)=3sin

3
a; 3sina?, . . 17^=0.

ax

3cosa?,
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- = 9sin2#( sin or) -f cosx. 18sin# cos^+ Ssi
CLtXr

sin# cos2
.*-,

. . . Z7
3=0.

doir

....... 7=21.

3s8
.

21^ 3^ 7*4
'

~2~
+
2T3T4

~ &C>=: '

~2~
+~8"

~&C'

(6.) Develop (l+e*)
n
according to ascending powers of x.

Let u=(l+e*)
n

,
whence if x=0,

n
-V; make #=0,

GfJ/

-l)(l+^)
n- 2^2a:.2+ e

2a:

.jz(w

make #=0,

Whence, by substitution in the theorem,
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a -r x
(7.) Prove that log(l + a?)

= x ^+^ 7-+ &c -

Let M=log(l+#), whence if #=0, C^ =log(l)=0.

-7-
=

^
-= 1 x-\-a? oP+ x4 &c. by actual division.

ax \-\-x

But (Maclaurin's Theorem. Cor.)

And, equating coefficients of like powers of x,

771 77 1 1
4̂ - 1 _^L_ 1

1

2
' 2-3~ ' 2-3.4"

.-.^=1, U2=-l, U3=2, U4=-2.3, t75=2.3-

Whence, by substitution in the theorem,

tf
2 Xs X*

log (1 +*)==*- - + - + &c.

Cor. Writing x for x we have

y2 yA yA
log (l-o?)= -a?- j

~
J
-
J
- &c -

(8.) Show, by help of the last example, that

i /
* \- l l l

,

l l

10g l^TlJ-ar-l
"

2 (*-l)
2+ 3 (or-1)

3
"

/p

Put-r-=l z, then
x 1

log (1 +*)=*- 1^2+^3_ &c. (Ex . 7.)

X X X+l I
But Z=-:- 1 =

X 1 X 1

1 11.11
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(9.) If an and ln respectively represent the coefficients

of xn in the expansions of ti=f(x'), and log u ; show that

nan=&!_!+ 2 Mn-a+ 3 16an_3+ .... + nbna .

Assume u=a + a
1x+a^ .... + anx

n
,
then

dx u a^+a^+a^ . . +anx
n

Now log 11=^1^+1^+1^ .... +l>nx
n

= diff. coeiF. of losr u.

= _ ( +wn

And, multiplying by the denominator, and equating coef-

ficients of like powers of x, we have

nan=bl
an_l+ 2b2an_2+3b3an_ 3+ . . . +nt>na .

(10.) Develop sin# and cos# in ascending powers of x.

(11.) Prove Euler's formulse,

2v-l

(12.) Prove De Moivre's formula,

v 1 sinmo:=cos^ v 1 si

(13.) Prove that

(14.) Ifwssain"1
^, show that

sin3w 32 sin5w 32.

n= sinM+ -5-+ - -
-1- + &c.
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(15.) Develop u=cotx by the method of indeterminate

coefficients.

1 x a? 2^
C0t*=^- 3 -3^5 -3^75-7

- &c -

(16.) Prove, by Maclaurin's theorem, that

(17.) Show that cos-1o;=- x ^ 2737475
"" &c'

(18.) Show that sm(a-\-bx+cx
2
)=sin.a

2ccosa I2sma

(19.) Prove that -~=y ~ F2
~
TT~3

~~ &C>

(20.) If costf+sintfv
/ I=ex

'^~*, and x take the parti-

cular value -
prove the two formulae of John Bernouilli,

2

namely,

TT= v l-log( 1), and

Implicit Functions.

Ex. (1.) Given w3 3u+a;=Q, to expand u in a series of as-

cending powers of x.

#=0, ti
s 3u=Q, :.u=0, '. U =0.

3^+1=0, *= 1

ax ax
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-9
d*u I dxL u -1

3(w
2-l)2~3'(M

2-l)2
'3(>

2
-l)

2 ~
ft

dx

2 _5M2-1 -1 2
'

4 '3tt2-l~
~

27

.

dx v ' dx

20 -4^3-

^M_ 40 22M4+19^2+1 40

"^~~243* (w
2-!)9

' ' 5~24T

Whence, by substitution in Maclaurin's theorem,

x a?" a?
U =

3
+

3-4
+ V + &C'

(2.) 2us ux 2=0 ; expand u in a series of ascending

powers of x.

8 1 ar3 x4
(3.) w2--=6# ;

show that u=2 +x -ztr^+ > o .M 2 2-3 2-3-4

^r
4 3^

(4.) w3o: 8? 8o;=0 ; show that =# -- &c.

(5.) 4i$xu 4=0; showthat w= 4 44#-3(4)
;7
tf
2 &c.

D 2
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(6.) us a?u+aux a?=Q
;
show that

x3 x4 tf
5

u= &c.
a2 aA a4

(7.) sinM=tfsin(a+ tt), show that

X T^ (A

u= r-ir+ sina -+ sin 2 a
-^

-+ 2 sin a (3 4 sin2 ) + &c.
1 \. ' J> i * 2i ' o

CHAPTER VI.

EVALUATION OF INDETERMINATE FUNCTIONS.

P
When the two terms of any fraction contain a common

Q

factor, as x a, and the particular value a be given to x,

then, since x a will be equal to 0, the fraction will assume

the form > and be indeterminate.

Such a fraction is improperly termed a vanishingfraction ;

since its values may be finite, infinite, or nothing.

When the common factor is obvious by inspection, it may
of course be removed by division.

The method of John Bernouilli is to differentiate the

numerator and denominator, separately, until they do not

vanish simultaneously by making a;=a, and thus to deter-

mine the true value of the fraction in that case.

Pfy; Q\.
If the fraction be of the form -=- ( and m or n be a

Q(x a)
n

fraction, this method of successive differentiation will not

apply, since, however often we differentiate, we shall never

eliminate the common factor.
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In this case we may put a.h for x, expand both terms

of the fraction in a series of ascending powers of h, and

then put A= 0.

The process of evaluation of indeterminate functions

enables us to find the sum of a series for a particular value

of the variable.

Ex. (1.) Find the real value of the fraction

ax2 2 acx+ ac2- when x=c.
ox^2bcx+ be*

Here P=ax2 2 acx+ ac2, Q=bx2 2bcx+bc2
,

j -p

.'. 2ax 2ac=0 if#=c
ax

=2bx-2bc=Q ifx=c
dx

2a a
- the fraction = -=-.

(2.) Let w= r : Find u, when x=l.
*X/

~"~~
JL

Here P=x?+2x2-x-2, Q=a?l;

,

* 1= 6 if x=l idx 6 o
fin }

:.u=~=2.
v o o o .,, , 3
=3ar =3 if #=1 J

#

(3.) z= : =1. when x=0.
x sin#

=ex e
siua:

. cos^=l 1=0 if#=0,
dx

^:=1 1=0 if#=0
dx
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d-P
-

dor

-rv
da?

-=ex +e?
inx

cosx+smo;e?
iax

. coax cos2^; e
sm;r

. cos a:

da?

+ e
sin * 2cos.rsin;r=l + 1 + 1 + 0=1 if #=0,

^-5-=cos^r=:l iftf=0, .'. =T=1.
da? 1

, , x ,1 N ,
TT^T 1 x 2

(4.) ?<^(1 a?) tan- =-=->
2

,
TTO; TT

Here P= 1 x, $=cot - a?,
m

dP dQ 2
-7-= 1. -j =-- > make #=1, then

7T 7T

2 _2__7r
. 7T 1 2

/rr\ (a
2

(o.) ?= ^-----. Jjind ?/. when x=a.

Put a;=ah, then



~
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A)*+Jl (2 Ji\*+ h%

Now, putting 7i=0, we have u=
3*a+ l

tan# sin.r 1

(b.) n=-5
-=K > when a;=0.

x6 2

dP
</.c _ sec2^ cos a?_ 1 1 cos3J? 1 cos3./?

~dQ
=

3 a2
=

cos2T~3T2
~~

3 a;
2

dx

since the factor ^-=1 when x=Q :

cos'x

d2P 3 cos2.? . sinx sinx

cos^e 1 tan^r sinar 1=-=-, hence - - --=-, when .r=0.

__

(7.) Find the real value of -~r ^ when ar=l.
.4 3

Ans. oo .

... a_(a2_^ 1

(8.) Ife<=-J
^
- when o;=0, u=

xz 2a
9 4 ^

/>^A_ ft <-2 2

(9.) M=-^_
'

> when x=a, u=3a.
Vax a

ft c\\
(10.) M=----- > when o;=. =0.

cot .r+ cosec as I TT

(12.) ii=. --> when x=> u= l.
cot x cosec x+ 1 ^

7T

sin x

(13.) u=- > when x=-^> u=- 1.
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.) If in
~ Xn

x=l, showthat l+
Ia;

1 &n vi n
-, when#=l, n=^-

(17.) u

(18-) "=1,1/1 V'x' when*=0, w=2.

2
LfCbiJL Vi V 7T*v ,

(
19 =!T3;iTZr' when^=0, =-.

6

log* a; , /\
(20.) M= when.r=l, w=log f

-j

(21.) w=^=fe^ whena?=0, =:
V^tf-tf2

,.,. N flj a+ v tax to," , .

(22.) u= =1, when.-r=a.

(23.) u= > when #=oo, w=0.

loga;.(l x)
(24.) M= to

,

v
,

-> whenar=l, u=2.
^ / /* 1

-y lOO'//'

(25.) M=rd^~ ir

=0, when #=00.

ITT

4 a* 7T
2

(26.) u > when x=Q, u=-
TTX

(27.) If ye? #=0 ; show that when # approaches co the

limiting values of e~* and y are identical, and that the limit-

ing value of y is zero.
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(28.)
log (t

(29.) tt= v
~

'

1^"n
a)
=-4rg' when x=a.

x2 a2 TTX 4
(30.) u= -. tan- > when x=a. u=

ar 2 a TT

(31.) w= when x=a, u=mema
.xa

(32.) =

logd+tu;)

(33.) w=e *
,

when #=0, z<=<?".

(34.) w=-r- when x=(j. u=2.
1cosx

(35.) If the fraction -7. --7. assume the form oo oo

'/(*) 0(*)

when #=a ;
show that this illusory form oo oo

,
and also

x oo are each identical with the form

CHAPTER VII.

MAXIMA AND MINIMA.

ONE VARIABLE.

If a quantity increases to a certain extent, and then

decreases to a certain extent, its values at these limits

respectively are a maximum and a minimum.

If it repeatedly increases and decreases alternately, it

has several maxima and minima.
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If it increases continually or decreases continually, it has

no maxima or minima.

Let uf(x) ; then, to determine the values of x which

render u a maximum or minimum, put -y-=0 or GO, and
LNV

substitute the possible roots of the resulting equation in

> then, if =a negative quantity, the value of x which
ax* ax*

is substituted renders u a maximum : if - -=a positivedxz

quantity, the value of x which is substituted renders u a

minimum.

A maximum or minimum can exist only when the first

differential coefficient which does not vanish is of an even

order.

tt

If u = a maximum or minimum, then au and are
a

maxima or minima. Hence, before differentiating, we may

reject any constant positive factor in the value of u.

If u=& maximum or minimum, then un is a maximum or

minimum if n is positive ;
but when ^<=a maximum u~n is a

minimum, and when u = & minimum u~ n is a maximum.

Hence, before differentiating, we may reject a constant

exponent.

If w=a maximum or minimum, logw is a maximum or

minimum. Hence, when the function consists of a product
or quotient of powers or roots, we may use the logarithms.

Ex. (1.) Find when a?5&A+ 5a*+ \ is either a maxi-

mum or a minimum.

Let u-=af> 5x*+5x3+ 1, then

=5#4 20^+ 15.r2
,

and putting this=0,
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*2 4or= 3, #= 3, #=1,

,/2

-=20; 3 60ai2+ 30^r, and substituting successively

the values of x, (0, 1, 3) in this expression,

<f
2 u
-s=0, from which we can infer nothing,

(t *C

d'z u
-^= 20 60 + 30^ 10, which indicates a maximum,
dor

d2 u--'=540540 + 90= -f- 90, which indicates a minimum.
dJ?

Hence, when a?=l, w= 2, a maximum,

and, when .r= 3, u 26, a minimum.

(2.) If u= v 4 2 a^ %aa?, ascertain those values of x

which make u a maximum or minimum.

Rejecting the radical and the common factor 2 a, put

/7ft

=4ax 3a,-
2=(4a 3x) x=0,

Jx

4 a
:.x=> x=0,

j

d'~u
-= 4 6cc=:4a 8a= 4 a,

ax2

Hence x= makes w=

= > a maximum,

c=0 makes u= Q, a minimum.

E
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(3.) Determine the maxima and minima values of the

x2
function u=- -,

1 + x1

\ 1 + x2

Putting u=-> we shall have =
f X

- ^2 ~^2~
=

'
-'- x=z + ^> X= l,

CiX t*/ w

d 2 v_x2.2x(x2
-!) 2x_2x 2_

dx2 x4 x4 Xs

d 2 v 2
:. r= -\--> which indicates a minimum,
dx? 1

d2v 2= > maximum,
dx2 1

1 1
.'. u=

^ t
= > a maximum,

t

-1 1
M=- -= > a minimum.

(4.) Divide a number a into two such parts that the pro-

duct of the mth
power of the one and the wth

power of the

other shall be the greatest possible.

Let x, and axbe the parts, then

i/ . yjn tfjt gc\
n

dii

dx

=xm ~
l

(a x)
n~ l

{
xn+ (a x)m}

_ ma

Or thus, log M=m log x+n log (a a;),

dn 1 in n du tarn mx nx\

dx u x ax dx \ (a x)x /
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du am (

.-.05=0,

dx (a*)*
am

in + n

Now the values and a may be rejected, since there can

be no division of the line if *=0 or a.

Hence, differentiating again, and substituting inm -j- n

the second differential coefficient, we have

d,
2u
-= (m+ n). which indicates a maximum,

fl If*

am an
.'. *= and ax= are the parts.m -f- n in + n

(5.) If w=sin3
*cos*, show that M is a maximum when

a;=60.

= sin3a: sinx+ cosx 3 sin2a? cos a;

dx

= 3 sin2* cos2* sin4*= 0,

.' . 3 sin2* cos2*= sin4*, 3cos2a?=sin2ic=l cos2*,

_1cosu,_-> ..*
,

- -=3sin2
. 2coso;( si

dx*

4 sinsa; cosx= 6 sin3a; cosx+ 6 sinx co&x

4 sin3aj cosx= 1 sin3# cosx 4- 6 sinx cos%.

v/3 3v/3
Now sina;=r-r > . . exax= -

>

rf
2w 30X/3 1 6 v/3 1 24 /-

.

;
=----- - -f -= - x/3, a negative result,

dx- o A & o ib

3v/3 1 3 /-
/. u= - = V 3, a maximum.

o 2 Ib
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(6.) Divide a number n into two such factors that the

sum of their squares shall be the smallest possible.

ft

Let x be one factor. - the other : then
x

2 du . 2*2
> =23!---= 0,

ax a?

= 2H r=2H -=2 + 6= + 8. a positive result,
dx2 x4 n*

:. u is a minimum. Hence the sum of the squares will be

the smallest possible when the factors are equal, each being

the square root of the given number.

(7.) Into how many equal parts must a number n be

divided that their continued product may be a maximum ?

Let there be x equal parts, then

n- is the magnitude of each, and
x

(A)

, X

-) is their continued product,
Xsf

/ w\
logu=x\og (-)= (logn logic),

du 1 / 1\
=a> I 1 -f-log?? log.= 1 -f-logn logo;,dx u \ x'

* -={!+ logtt log^}=:0,
w*c

:.\ogx=\ogn l=\ogn\oge=\og(yj,
:.x=--

=
(x) (~ x) +=*(- ,7)'

a neSative re 'sult
'

/w\*
2.

. . ?/= I - i ^ a maximum.
\x/
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t

(8.} Show that is a maximum when #=45.
1 + tana?

du (1 + tan x) cosx sin a? (1 + tan2
*)

dx~ (1+tana;)
2

cosx 4- sinx sinx sinx tan2a:

(1 + tanz)
2

cos a; sinx tan2#

(1+tancc)
2 =0,

d*u 3 /-;= - v 2. a negative result,
da? 4

sin# 1= v 2, a maximum.
4

(9.) If a be the hypothenuse of a right-angled triangle,

find the length of the other sides when the area is a maxi-

mum.

Let x be one of the other sides, then

v az x2 is the remaining side.

i

And area =-#V/

a2 x2.

'2t

Now, rejecting the constant -> we may take

<w
:= 2 a2

1 2 #2= 2 rt
2 6 a2= 4 a2

,
a negative result,

aar

;. ?^ is a maximum, and the area is a maximum when the

two sides are each =
v/2

E 2
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(10.) What fraction exceeds its -

th
power by the greatest

number possible ?

Let x be the fraction, then u=xxn
,

=1 nx"~ l =.0.

72 1

=: w(n l)o?~
2= w(w 1)

> which is negative,
(i As .

n n-l

:. u is a maximum. 1
Ans.

n-l/vn

(11.) Within an angle BA C a point P is given, through

which it is required to draw a straight line so that the

triangle cut off by it shall be the smallest

possible.

Let PN - a, A N = I, A D = x, then

ND = x-b, ND : PN :: A D : A E or

CtXxb : a :: x : AE, :. AE=--

x b

Now area A LA E=-AD-AE sin^ -x

j dx

2, 2 x

_x'
i
-<L})x_x(x-

s

H^_~ ~
'

a positive result, .'. the area is a minimum.

Since AD= ZAN, :.!= 2 DP, /. the line must be

so drawn as to be bisected by the given point P. .
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(12.) From two points A, B, to draw two straight lines to

a point P in a given line ON, so that AP+BP shall be a

minimum.

Let be the origin of co-ordinates, and the given line the

axis of x.

Let OPx, and let the co-ordinates of A be a, I, and

those of B be 6,. Then_
AP- </AM*+PM*= A

Q ' \/- ^ __

BP=

:. u=AP+P= v^*+(3? )
2+ l?+ (a, #)

2
,
a minimum,

du_ xa a,

dx~ v - 2

fy* XY /T *Y*

- = '

. > or

(13.) If the length of an arc of a circle be 2 a, find the

angle it must subtend at the centre so that the correspond-

ing segment may be a maximum or minimum.

Draw CD bisecting the arc, and let x be the

radius, then -= / ACD.
x

Now area segment AD=sector ACE

=- rad x arc - x2 sin ACB
"A 2i

1
. ACB ACB

=ax - x*. 2 sin - cos
jra 2i 2

. a . a
. . u=ax x* sin - cos ->
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duOU <,./ <*\ / a
\ 9

a n I a
=a a^sm- sin- ;) x2- cos -cos- =

dx x\ xl \ a?! x x\ x*

o a a
2.r sin- cos-

=a asin^-+ acosj--#2 sin- cos -
x x xx

a .a a
=a + 2acos---x2sm cos-

x xx
o a I a a \ n= 2 cos- (a cos--#sm

)
=0.

X \ X XI

a a TT 2a . 1

Take cos-= 0. .'.-=-> ^= , and the segment is a -Q
x x 2 TT 2

^ maximum.

sm-
Take a cos -= x sin -> .".

- = tan~=->xx a x x
cos-

.'. -= 0, .'. x= x) and u = minimum.

(14.) Within a given circle to inscribe the greatest isos-

celes triangle.

Let radius OA=. a, AB= AC=-x, C=.2y,

AB-AC-BC x2v
ED=y. Then A=9 --- -

AO 2a

.. A EC^AD
Also A = = =yvx* y'

.=y*/xi
y*, #2=2 a Vx^f,
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Now A = or
2
y= - tf

2 # Sa2 x2
,
a maximum.

2a 2 a 2 a

Put u

d̂x

x2=3a2
, :.xa"/3,

5(7=2 v=-av3 v 4a2 3a2=a\/3. and A is equilateral.
a

(15.) Of all equiangular and isoperimetrical parallelo-

grams, show that the equilateral has the greatest area.

The perimeters of the figures being all equal, the perimeter

of each may be considered as one line, and the proposition

then resolves itself into the following.
" To divide a given

straight line into two such parts that the rectangle contained

by those parts shall be the greatest possible."

Let a be the line, x one part, then a x is the other,

x(a x) is the rectangle, and u-=ax x2
,
a maximum.

au on a
-=a-2*=0, ..*=-

.'. the line must be divided into two equal parts, and the

parallelogram will be equilateral.

(16.) Of all triangles on the same base and having equal

vertical angles the isosceles has the greatest perimeter.

Let a be the base, a the vertical angle, # and y the two

sides, then u =a +#+y=a maximum.

> o

a-,=1+^=0 /. =
dx dx dx

dy
, ->3sa>;r- \-lij cosa=2or-

(J.OI/
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(17.) The segment of a circle being given, it is required

to inscribe the greatest possible rectangle in it.

Let BA D be the segment, radius = a,

A M=x, draw A G through the centre per-

pendicular to PM or BD. Let AG=b.

Then PM2=(2ax)x, Euc. B. iii p. 35.

/.PM= ftax^aP, MC= I -x,

Area rectangle MC- 2PM=2 (b x]

Put u=(b-x}
2
-(2ax-x

2
},

.'. (bx) (a x)=.%ax a?, ab ax

ab

2 y
3 a + 1 ^9a 2 2ab+ b2

(18.) To cut the greatest parabola from a given right

cone.

Let BD=a, AD=b, BG=x, CD=a-x, A

Then v BN'DM is a circle, and MC-NG,
:.MC2=BC-GD, MG= Vx(a-x\

/
-p^

Also BD:AD::BC:PC, :.PC=^-~J,BD a

Ai-ea parabola=-PC-MN=- 2 ^ax x2
,
a maximum,

o 6 a

Put u=-x2 (ax x2)=ax
3 x4

,

-.
4:

7-5= -7 (i
2

,
which indicates a maximum.

dx* 4
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(19.) Within a given parabola to inscribe the greatest

parabola, the vertex of the latter being at the bisection of

the base of the former.

Let BA (7be the given parabola, L its latus rectum.

AD a, BD=b, DN=x, PN=y.
2 n 2

Area parabola = 2PN JvD=-- 2yx. B D c
o o

Now Y the square of any ordinate to the axis = the rect-

angle under the latus rectum and abscissa,

y
2 a x b.-.-='

U- a

4 I
.'. area parabola = ;=d?va x.

3 v/tt

Put u=x* (ax} = ax2 Xs
,

du 2
'ax, x-^a.

(20.) Inscribe the greatest cylinder within a given right

cone.

Let ACl)eihe cone, AD=a, BDb, DN=x, PNy,
AN=ax.
Volume of cylinder =1. (2^V)

2
. ND=7r^x.

AD-.BD:: AN : PN, :.PN=?^-AN, or -

AD u i> c

=-( x), :. cylinder *
t (a x)

2x.
CL CL

JT\lt U ~~^~ \CL ~*~ ' 3C}*'3C^~~ (L OC 2 tt.3u I ff~

du
2

,

q n
-

2
a

d oc o
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(21.) If the volume of a cylinder be a, find its form when

its surface is the least possible.

Let AB= x, BC=y.

Surface = convex surface + 2 area of base

|

7T t B-

7T 7T

Volume =a=C 2 --r-AB=-.
4 4

7T

Hence =TT -j/+-

</M 4 a

___ _4a~~"~ :

or altitude = diameter of base.

d^u Say Sa
,= f -|- Tr=5 +TT= + 3 TT, a positive result,

dy
2

y* y
6

:. the surface is a minimum.

(22.) The latitude of a place and two circles parallel to

the horizon being given ;
to determine the declination of a

heavenly body, whose apparent time of passage from one

circle to the other shall be a minimum.

Let P be the pole, Z the zenith, S, S, the positions of the

heavenly body on the parallel circles, the polar distances

PS, PS, being equal,

/ ZPS=P, ZPS,= P,, polar distance PS or PS,=x,

arc ZS-=a, ZS
{
=an latitude =, declination = S ;

then

V the passage along the arc SS
t
is the shortest possible,

:. the angle SPSt

= a minimum,
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. dSPS,_d(P,-P)_ . dP,_dP
dx dx

'

dx dx

dP_ cotS dP,

dx wax dx sin#

cot cotS, >"
sin a? sin x

sin/ cosa cos# sin/ cos a cosx
Again cos o= : : 0030,= : r-

1
>

sina sin# sin
,
sin x

sin/ cos cos a: sin/ cosa, cosa?

sin a sinff,

1.
cos _(a,+a)

cosa;=: -sin/.

cos^r(a, a)

And v the declination is the complement of the polar

1

distance, .'. sinc)=
' - -sml.

cos -(a,-a)

7T 7T

Cor. If a=-^> and a,=+2d, this expression becomes
2i Z

sin2= tand sin/; and if the heavenly body be the sun,

and 2d=l8 nearly = his depression below the horizon

when twilight begins in the morning or ends in the evening,

we are enabled to determine the time of shortest twilight by
means of the analogy rad : sin lat :: tan 9 : sin, where

the negative sign indicates that, if the latitude be north, the

declination will be south, and vice versa.

(23.) The centres oftwo spheres (radii rlt rz) are at the ex-

tremities of a straight line 2 a, on which a circle is described.

F
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Find a point in the circumference from which the greatest

portion of spherical surface is visible.

Let x and y be the distances of ^r^L
the point from the centres of the

two spheres ;
draw tangents JSA,

EB, ED, EF; join AB, DF.

Then, of the sphere C the portion

visible is the convex surface of the

segment AHB S, whose area = height H8 x circumference

of the sphere.
r 2

Now x : i\ :: r, : CS, :,CS=> .'.height of segmentx

=rt
=HS, circumference of sphere= 2 TT^ ,

x

(Y
2
\

r
l -)= visible portion of sphere C; and similarly

x I

((*
\

r2
)

= visible portion of sphere c.

7

C / r 2
\ / **.

2
\1

Hence %TT\ rAr^ ) +r,(ra )
I=whole visible surface.

I V */ V y n
A* 3 A* O

Put n=r 2- + r?- > then
x y

^_!!L_J -Q .-.!i= -.!i^,
dx x2 y

2 x2 y2 dx

dyBut y= v 4a2
y?, .'.

-L-=
dx v4 2

i

Hence = =

4:^ V\
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(24.) Of all ellipses that can be inscribed in a rhombus

whose diagonals are 2m and 2n, show that the greatest is

in n
that whose maior and minor semi-axes are -^ and -=.

v/2 -v/2

respectively.

ABCD the rhombus, OC=m, 0=n,
a and b the semi-axes of the ellipse.

Let ON=x, NP=y. Then by the

properties of the ellipse

OG-ONa\ OB-NP=b2
, orm-x=a2

, n-y=b2
,

j.1 U1 ?/
2 12

:.m2
a;
2'=a2.a2

,
n2

i/

2=b2.b2
,

=> *
>

a* tar o2 n2

..-B+TS== *H s=l; (1), where a and b alone
a2 b2 m2 n2

must be considered as variables.

But, area ellipse =irab= a maximum.

Rejecting the constant TT, and differentiating this and

equation (1),
we have

b a b db

a b b a2 b2 2a2
_2b

2_

a 1 b 1 m n

m v2 n v 2 v 2 v 2

(25.) If u=xf 8^+22^24^+ 12, find the values of x

which render u a maximum or a minimum.

Ans. When x=3, M is a minimum,

#=2, u is a maximum,

#=1, u is a minimum.

(26.) Find when tf
3

6-r2+ 9#-|-10 is a maximum, and

when it is a minimum. -,-, oWhen #=o, M is a minimum,
#= 1, ^t is a maximum.
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(27.) Find the maxima and minima values of the function

. I2

When ic=-r > w is a minimum.
oa,

b2

7- > w is a maximum.

/Tf/

(28.) M=- J ascertain when ?< is a maximum and
(a xf

when a minimum. a . .

When x= a, u= ^ > a minimum,

x= + a, U= OQ
,
a maximum.

i

(29.) u=-of; find when u is a maximum.

#=e=2 -71828 &c.

(x + 3)
3

(30.) u=-.-^> determine when u is a maximum and
(a? + %y

when a minimum. a?= 2, =oo, a maximum,

#=0, z<=6f, a minimum.

(31.) u=x-\- </a?2bx+a?', when is u a maximum?

a maximum.

(32.) u= |

- ? show that M is a minimum
'

when #=

(33.) M=seca?+ cosecd?; show that u is a minimum when

(34.) In a given triangle to inscribe the greatest paral-

lelogram,
Ans. Side of parallelogram = ^ side of triangle.

(35.) A column a feet high has a statue on the top of it,

the height from the ground to the top of the statue is I feet
;
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find a point in the horizontal plane at which the statue sub-

tends the greatest angle. /-r f , r
Ans. v ab teet from the base.

(36.) Show that the difference between the sine and

versed sine is a maximum when the arc is 45.

(37.) Let A G and BD be parallel, and join

AD; it is required to draw from C a straight

line so that the triangles EOD, AOC together

shall be a minimum.

Let AC= a, AD=l, A0=x ;
then x= VT.

(38.) The base and vertical angle of a triangle being given,

show that when it is isosceles its area is a maximum.

(39.) A farmer has a field of triangular form, which he

wishes to divide into two equal parts by a fence
;
find the

points in the sides of the field from which he must draw the

line, for his fence to be the least possible expense to him.

Ans. If
, b, c be the sides, the distance of each point

from the anle C is A / --> and the lenth

of the fence is
/(c a+ b

is A/ i-- b)

2

(40.) If the greatest rectangle be inscribed in an ellipse,

the greatest ellipse in that rectangle, again the greatest rect-

angle in that ellipse, and so on continually ;
show that the

sum of all the inscribed rectangles is equal to the area of any

parallelogram circumscribing the given ellipse.

(41.) Prove that the greatest area that can be contained

by four straight lines is that of a quadrilateral inscribed in a

circle.

(42.) Inscribe the greatest ellipse in a given isosceles

triangle. 2
Atis. Major axis = altitude of triangle.

o

F 2
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(43.) A tree, in the form of a frustruni of a cone, is

n feet long, and its greater and less diameters are a and b

feet respectively ;
show that the greatest square beam that

can be cut out of it is . rr feet long.
o (a o)

(44.) Describe the least isosceles triangle about a given

circle. The triangle is equilateral.

(45.) To inscribe the greatest right cone in a given sphere,

whose radius is r.

T
Distance of base of cone from centre of sphere = o

(46.) If the polar diameter of the earth be to the equato-

rial diameter as 229 : 230 ;
show that the greatest angle

made by a body falling to the earth, with a perpendicular to

the surface, is 14' 58", and that the latitude is 45 7' 29".

See fig. ex. 9. page 84.

(47.) In a parabolic curve, whose vertex is A, and focus

S, find a point P, such that the ratio AP : SP shall be a

maximum. Ap : p : : 2 : A/3.

(48.) Inscribe the greatest parabola in a given isosceles

Altitude of parabola =- altitude of triangle.

(49.) If in a circle, whose radius is r, a right-angled tri-

angle be inscribed ; show that, when a maximum circle is

inscribed in the triangle, the area of the triangle is r2.

(50.) Inscribe the greatest cylinder in a given prolate

spheroid.

(51.) Required the maximum and minimum values of u

in the equation w3 a

(52.) u= ) find the maximum and minimum values

of M.
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(53.) Show that the greatest paraboloid that can be in-

2
scribed in a given right cone is ^ of the height of that cone.

o

(54.) u=a?'i~loex
; show that when u is a maximum,

(55.) Find that sphere which, being put into a conical

vessel of given dimensions, will displace the greatest possible

quantity of fluid.

(56.) Two circles of given radii intersect each other
;
find

the longest straight line which can be drawn through either

point of intersection, and terminated by the circumferences.

(57.) If a tangent to a great circle of a sphere measure 5^,

and a perpendicular to a tangent meeting the great circle

measure 4 feet ; show that the volume of the sphere is to

the volume of its greatest inscribed semispheroid as 27 : 16.

(58.) Find what values of x make (x 2) (ar+3) (5 x) a

maximum or minimum, and distinguish the one from the

other.

(59.) Inscribe the greatest cone in a given hemisphere

ABC, the vertex of the cone being at A.

For other examples and solutions see chap. xi.

IMPLICIT FUNCTIONS OF TWO VARIABLES.

If u=.f(x, y), u being an implicit function of the two

variables x and y, by putting = 0, we shall find the
ax

values of x which render y a maximum or minimum.
TO

By substituting the particular value of x in
( -r- )

>

\dac2'

dyl
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if the result be positive, y will be a maximum ;
if negative,

a minimum.

Ex. (1.) Let tt=#3 3a2x+y3=0 ; determine the maxi-

mum and minimum values of y.

Differentiate with respect to x, considering y constant.

-=3#2 3 2=0, :.x2=a2
, x=-\-a, x= a.

ax

dzu

-J=6i Differentiate the given function with
(iX^

respect to y, considering x constant.

=3w2
. Substitute the values of a; in u.

dy

0, .\y
3=-2a3

, y=-aV2.
d2u dy 6x Ga %

.*.--:
--=-=-

-\
--

' a positive re-

da? dx 3j/
2 3 2

. 2* a

suit, :.y=a A/2 is a maximum.

d*u dy 6x -6a V2- -^- -1-=-=-=-- > a negative re-

da?
'

dx 3y* 3a2.2% a

suit, .'.y= a v2~ is a minimum.

(2.) w=a?3 3axy+y3=Q') show that when x=0, y=0,

a minimum
; and when x=a v2, y=a v4, a maximum.

(3.) 4:xy y4 x4=2 ; show that when x +1 or 1,

y= + 1 or 1, neither being a maximum or minimum.

(4.) y
2 3= 2x(xy-\-2) ;

show that when #=1, y= 1,

neither a maximum nor a minimum
;
but when x ^

S3

y=2, a maximum.
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CHAPTER VIII.

FUNCTIONS OP TWO OR MORE VARIABLES.

If ?/=/(#, y), x and y being two variables independent

of each other, then

d2u d2
ti d3u d3u d3u d'Au

dydx dxdy dy
1 dx dxdy2' dydx2 dx* dy

dn+ru dn+ru
and generally ^=-

dy
rdxn dxndy

r

In a function of any number of variables, the order of

differentiation is indifferent.

The total differential of two variables is equal to the sum

of the partial differentials ;
or if u~f(x, y),

fdu\ , /du\

dnu dnu
dnu=- dxn+n - r-r- dxtt~ l

dy
dx11 d^-^d

d 2u
Ex. (1.) Let w=3^/2 ;

find du, and
dxdy

To find the partial differential coefficient
(-j-Jj

consider

y constant, and differentiate with respect to x ;
and to find

( ), consider x constant, and differentiate with respect

to y.
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, d2u d 2
ti idu\To find - or -= > differentiate I considenng x

dydx dxdy \dxl

constant, or differentiate (

j considering y constant.

= a?y (3y dx+ 2 x dy).

d2u 9=3 x 2yx
2=6x2y=

dydx dxdy

x2 y
2 }

dydx

Ur/"~ (x2-

d2u _ (x
2-y2

)
2-8xy-^xy2 -2 (x

2-y2
) (-2y)

dydx (x
2

y
2
)
4

v y / \~

= xy
** +y2 =^

(x* y
2
)
3

dxdy

,.) it^sin" 1
: find du, and -

>

y dydx

1 du I

:X, COSU-^-=>
y dx y

/du\ 11 1

\dxi y cos u ij A/1 sin2 // / ~?y W1--2r
i i

ft x2 Vy2 x2

f
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Aerain siiiu=-i consider x constant.

y

du x
COSM- =--

^J
dy y*

/du/u\ x

\dl
~

2cos u
~

\dyJ y
2co$u y

2 \/l sin2 z yVy2 y?

fdu\ T [du\Hence du= ( 1 dx + I -y- ) y

1 # 7 7/rfa? xdy= dy=
J

v y
2 x2 y v y

2 x2
*

y v y
2

^r
2

y _
</
2
? v7

^
2 x2 y d 2u

dydx y
2 x2

{y
2 x2

}? dxdy

(4.) u= 2 ./) find du, and show that

_ d2u

dxdy aPz2
dydx dxdz (a

2 ^2
)
2 dzdx

d 2u _ 2o?z _ d 2u

dydz (a
2 ^2

)
2 dzdx

d3u ^xz dsu d3u

dxdydz (a
2 ^2

)
2

dzdydx dydxdz

First differentiate considering y, z constant
; then consi-

dering x, z constant
;
and lastly considering x, y constant.

du %x du a? du

dx a2 z2 dy a?
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Now = ".
'

Consider x, z constant, and differentiate.
dx a* z*

dxdy a2 z2

du -
ay a2 z

d2u _ 2x d2u 2x _ d'2u

dydx a'2 z'
2

'

dxdy a2 z'2 dydx

du sc^= -- Consider z constant, and differentiate.
2 2

Again = '

Consider x, y constant, and differentiate.
dx a z t

d2w

(a
2-z2

)
2

(a*-z
2
)
2

'

= -f-^ =^-7; Consider y, z constant, and differentiate.
dz (a

2 z2)
2

d2u ^xz
-p.

d2u _ kxyz _ d2u

dzdx (a
2 z2

)
2

"

dxdz (a
2 z 2

}
2 dzdx

du

dy

du Su

Again -= - Consider x constant, and differentiate.
du a2 z2

d2u o?'

(a
2-z2

)
2

du

dz (a
2-z2

)

Consider x, z constant, and differentiate.

d2u 2o?z d2u 2a?z d2u
Hence

dzdy~(a
2-z2

)
2

dydz~(a
2-z2

}
2

dzdy

d2u 2 a?

Now =-^ r2
' Consider x, y constant, and differentiate.

o> z

d3u

dxdydz (a
2-z2

}
2

(a
2-z2

)
2

= 5^5. Consider y. z constant, and differentiate.

dzdy (a
2 z2)

2

dzdydx (a
2 z'

2
)
2
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-= r-= -=
r,

Consider x constant, and differentiate.

dydx az z2

d*u

dxdydz (

J3,,

Hence
dxdydz (a

2 z2
}
2

dzdydx dydxdz

(6.) u=zx2y^ ;
find du, and show that

jy ^7*2

8oys=-
dydx dxdy

(7.) u= A
>

du=-^(5ydx3xdy),

(8.) u=xy
',

du-=xy (-dx+logxdy), and

- xy ,
|

\ gX\= .

dydx \x x I dxdy

. _ . x . dsu 2 . x x x dsu

y' dydx
2

y* y y
4 y~

'

dx2dy

(10.) u=y sinx+x siny ; show that

d2u d2u

^=:COS*+COS
y=_

(11.) M=sin(or
2
y); show that

d2u
f

. . , v , d2u
-= 2# { cos (ary) i

rfy^ rfa:rfy

(12.) u=f :- ) show that

dz'2dy (2#+-Jr
)
3

dy dz
2

dzdydz

dxdz2
(2x+zY dz'2dx dzdxdz

G
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(13) u= > find du, and show that

x+y
d 2u _ *~
dydx (x+y)

3
dxdy

(14.) u={(a-x)
2+ (b-y)

2
+(c-z)

2
}~*; show that

d2u d 2u d 2
^t_

(15.) M=sin~ 1

~
> find du, and show that

d 2u 1 _ d2u

dydx y% (2 x y)
* dxdy

(16.) w=sin~ 1

-^ ^ ' s^ow t^iat

du= -3-7-
-
(ydx-xdy),

-j

CHAPTER IX.

EULER'S THEOREM FOR THE INTEGRATION OF HOMOGENEOUS

FUNCTIONS OF ANY NUMBER OF VARIABLES.

If u be a homogeneous algebraic function of n dimensions

of any number of variables x, y, z, &c., then

du du du
x + y-j- + z~r + &c. =nu.
dx dy dz

Ex. (1.)
=^-- ; here n= - 1.
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dx dy (x+y?

x+y

(2.) M=sin-i

du
cosw =

dx

herew=0.
\x+yl

v/tf+y- == */xy

xy

x+y

f--_. . )' fl= V 1 sin2M= / / 1 -=

xc . , i du
Similarly =

dy v 2y (x-\- y) v x y

xyxy

(3.) u=
du du

du du
:.x \-y =-

dx dy v2y(x+y)*/x y

n d2u d*u

r=0.

(4.) w=

heren=l.

here n=2.

du du du
-r+y-r+z-rdx dy dz

(5.) u ; here w=3.
x+y

du du
~j f-y-rdx dy
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CHAPTEE X.

ELIMINATION OF CONSTANTS AND FUNCTIONS BY

DIFFERENTIATION.

Ex. (
1 . ) Let y ax?+ 1= ; eliminate the constants a and b.

^2ax=Q a=- >

dx
~
dx 2x

Substituting this value of a in the given equation,

di] sc

y -r-'Tr+i^O. an equation from which a is eliminated.
dx 2

(1?J

To eliminate b, take the equation -~=2ax, and proceed
dx

to the second differential coefficient.

o=2a.
dor dx

T~z~-i---' an equation from which a and b are
dor dx x

both eliminated.

(2.) y
2 axbx2=Q ; eliminate a and b.

2y^=a+ 2bx, . :.a=2y^-2bx.
. . . . (1)

Differentiating again, we have

, ..*
dx2 dx dx y dx2

Substituting from
(1), (2), the values of a and b in the

given equation, there results

which a and b are eliminated.
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(3.) Ify= ~+5 ^
dor dor

(L tJ

+2b cos2#, - =
dx da?

in# 46 sin2#,

-r-^
dy?

4*9

CtfX,

5 ;75=-'da?

(4.) y^

sin2a?,

in# 205 si d^ dx2

eliminates.

. .

dx \dx I me

Substituting this value of in the given equation,

dy ,\ 1 dv
n~'> mymxn+-f'nm dx(dy-r-dx

7--my=nxn~ l mxn=(nmx)xn~ l
.

dx

(*) If *
First, consider y constant, and differentiate with respect to x.

G 2
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Again, ocf -)+0 (xy\ Consider a? constant, and differen-

tiate with respect to y.

^ *
Hence ar

2
-j-z y

2
v^=0.

ate
2

rfjr

(6.) Let y=m#3
; eliminate the constant m, and show that

_
(7.) Let y= vmx + n

;
eHminate m and n, and show that

P/
"

rf^2

(8.) Let a-\-c(ca; y)=:0 ; eliminate c, and show that

c

(9.) Let a^+ ~2^
2=-; eliminate the constants a and I,

d i/ /(J>'u\ dv
and show that xy -r4+a? l-~J y--=Q.y

dy? \dxl
y dx

(10.) Let (a 1) (#+y) #3/ + a= ; eliminate a, and

show that y
2+y+l + (^+a?+l)-^=0.
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(11.) Let c tanmx ysecmx-\-a=Q ; eliminate a and c,

and show that vs= m2
*/-

da?

(12.) Let y=ex cos a:
;
eliminate the circular and exponen-

fin t "1 ft 2/ti

tial functions, and show that y-,-- T: T~5'
dx 2 dx2

(13.) Let y=ncos(rx+a) ;
eliminate a and n, and show

that -7^= rzy.
dor

(14.) Let y = sin (logtf) j eliminate the functions, and

(X u fill

show that a? -r-^-f-tf-r hy=0.
or dx

(15.) Let y = ae2* sin (3 a; + b) ; eliminate a and b, and

show that ^ 4 + 13y = 0.

(16.) Let (# a)
2
+(y /3)

2=r2
; eliminate a and

/3,
and

, ., ,show that

__

(17.) Let y=- ; eliminate the exponentials, and
$r ~~ C

show that 2=1 _^.
dx

(18.) Let- =
(tf

2
y
2
) eliminate the arbitrary~~ "

function <i, and show that w-; |-o?-i-^7W^.
a ay

1 y
(19.) Let -#z=d>- : eliminate the function 6, and show

n r x

dz dz
that x-r+y-, \-z=Q.dx dy
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% i-.-i y 77 - Q

(20.) Let --=6-- : eliminate the function <*, and
xa, r a a

, ,.dz. .dz
show that (y b) \-(z y) =# a.

' ' '

CHAPTER XI.

MAXIMA AND MINIMA.

FUNCTIONS OF TWO OB MORE VARIABLES.

If u be a function of two variables x and y, then putting

du du .^d^u d2u i d2u \
2 d2u . d2u

j-=> T-=^ rf TVy-a > (j-j-) J Tl and T^
tfj; ay dx* dy* \dydxl dx2 dy

l

having both the same algebraic sign, u will be a maximum

when that sign is negative, and a minimum when it is

positive.

If, on substituting the particular values of x and y, de-

termined by putting -^-=0, -r-=0, in the second differen-
ax ay

tial coefficients, these should vanish, then the third diffe-

rential coefficients must also vanish, or the function will not

be a maximum or minimum.

If u=f(x, y, z), then we must put = 0, = 0,
(Lx dy

-= 0, and we must have the condition fulfilled that
dz

2u d2u d2u

)

d 2u d2u

du
f
d*u

\*}

~d~ \dxTz) }

\dydz da2
dxdy dxdzi
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Ex. (1.) Let u=x*-t-y
4

kaxy
1

;
find x and y when u is

a maximum or minimum.

Differentiate, first considering y constant, and then

x constant.

-,
dx dy

:.a?=ay
2
, y

2=2ax,

^=12*2=24*2,ax2

dy
2

dxdy

d2u d2u d2u
'

, , . .

.'. 5- ->- > and since the algebraic sign ot
dx* dy* dxdy

d2u d2u . /- 4/0
-7-7: and is positive. a?=:av 2. and y=a v o, give
dxl

dy
z

u= a minimum.
. J2

If we take the values #=0. y=0. then -=0, and
dx*

70

=0. and also the third differential coefficients

dy*

Hence also x=Q, y=0, give u= a minimum.

(2.) To determine the greatest right cone that can be cut

out of a given oblate spheroid.

Let ABDE be the ellipse which generates the spheroid,

a, I its semi-axes, Cff=x, NP=y radius of base of cone.
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Then y
2= (a

2
o?\ equation to

ellipse ; and

V altitude of cone =AN=a+x,
and 7r2/

2= area of base,

.'. its volume v= ^ iry
2

. (a + x), a maximum,
.'. y

2
. (a + x)

= a maximum,

dv 1

But, differentiating the

equation to the ellipse, y=Va?a?, we have
d

dy_ b x

fy ft** - nr*&

dx a vd2

2(a+x) v/a2

-U- 2Hence v=-7ry2
.

32

(3.) Let M=a;4 +2/
4 2 (xy)2

;
find the values of and y

which render u a maximum or minimum.

dy~

/v3 ^_ ( /> __ nA (|..x" \x y)v,

(x-y)=Q,

:.x=y, aP+ aP 2(x+x)=0,

2, :.x=</2, y=+</

^=12^-4=24-4=20,
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d2u d2u d2u d2u , .-- =4, .". >- > and since the
dxdy dx2

dy
2

dxdy

. d2u d2u . . .

algebraic sign of and is positive,
cix dy

:. x= -s/2, and y=+ */2, give u= a minimum.

(4.) Let w=a{sin#+sin?/+sin(#+2/)}; show that u is a

maximum, when x=y=GQ.

=a{cos#-j-cos(#+2/)}:=:0,

=cos#+ 2 cos2a- 1 =0,

d2u
=a{ sin# sm(x+y)} = a {sin60+ sin 120}

f-v/S A/3) /-
n ) I \ n A/ Q
Ctj ^ f - / t*V O,

<?
2
7< , /

s=a{ siny sm(.r+y)} = a\/3,
<*y

=a[ sin(^r+ 7/)}
= asin2#= a sin 120=; a -5

( / 1 '
'

^ ' '/

d2U

J2w 3 a /

-r-s is negative. .*. w= - v3= a maximum.
fl|f 2

(5.) A cistern, which is to contain a certain quantity of

water, is to be constructed in the form of a rectangular

parallelopipedon ;
determine its form, so that the smallest

possible expense shall be incurred in lining its internal

surface.



72 MAXIMA AND MINIMA.

Let o3 = its content, x = length, y = breadth, then

a3

= depth.
xy /

3 3

.*. surface =u=xy-{- 2 (-2 > a minimum. x
x y

du 2 a3 du 2 a3
"
dx a?

'

dy~ y
2

a3 a3 2^a=
-5

= Hence the base must be a square,
xy 2*a2 2

and the depth equal to half the length or breadth.

O ** n I

.". -7-5- -?. > (
-

r-J Hence u is a minimum.
ax dy \dxdyf

(6.) In a given circle to inscribe a triangle whose peri-

meter shall be the greatest possible.

Let r be the radius, and 6 and
(j>
two of

the angles of the triangle ; draw BD J_
J

A C the base : then, Euc. B. 6. prop. C,

BD
:.a=zr =2rsin0,

c

..c= X a=2r sin^,.

a smfl sm0

6 sin-S sin(7r B) sin (0 + 0)

a sinfl sinO sin0

Hence M=
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.\cos0=cos0, 0=0, + 0=20,

:.cos0+ cos20=0, cos0+ 2cos2 1=0,

COS2 + COS0= > .'. COS0= ^r>
=60=0.22 2

Hence the / s are all equal, and the A is equilateral.

=2r{ sine sin(0+ 0)} = 2r{ sin60+ sin 120}

= -2rv/
3,

-72..

. = _2r^
= -2rsinl20=-2r~= -r v/3,

^i

dd2
d<j>

2
ddd<t>

Hence the perimeter is a maximum.

(7.) To determine the least polygon that can be described

about a given circle.

Let 61} 2 ? #33 #> be *ne successive angles contained

between the lines from the centre to the angular points of

the polygon and the radii of the circle ;
then if the radius

be r, and the first of those lines be I, the area of the right-

angled triangle whose angle at the centre is 6
1
will be11 r2

-r^sin01=-r.rsec01
. sin0!= tanflj ;22 2

and similarly of all the n triangles successively, into which

the polygon may be supposed to be divided
;
so that the

entire area of the polygon will be

r2

. . . +tan0n).
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where 1=01+ 0,+ . . . +
. . -J-tan(27r ^), a min.

Now, differentiating with respect to 1? considering the

others constant, and remembering that
X
is contained in 0,,

the assumed sum of the series, we have

And similarly, any one of the angles is equal to the angle

immediately preceding ; hence all the angles are equal, and

the polygon is consequently equilateral.

(8.) Of all triangular pyramids of a given base and alti-

tude, to find that which has the least surface.

Let a, b, c be the sides of the base, Ti the

altitude of the pyramid, 6, <f>, i//,
the inclina-

tion of the faces to the base.

Then, if p be a perpendicular from the ver-

/ Jt

tex on the side a, sin0=-j .'.#= - =h cosec0,
p sm0

area of face =ap=-ah cosec0,
a

:. area ofthe three faces= -^ah cosec0+ ~bh cosecA+ -^ch cosecil/,222
u=-^h(acosecd+ b cosec^+ c coseci//) ........ (1).

Also, the base of the pyramid may be divided into three

triangles whose altitudes are readily determined ;

-7r=tan0, .'. =cot0, .'. altitude a
au h

:. area A.AOC=~a-aO=-^akcotB,
2i -

i

=/*tii0,
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.'. area base=-^ah cot 6-\--^bhcot(f>+rh cot
i/>,

2i a a

and putting this area =m2
,
we have

ot\L) ..... (2).

From (1),
=-] acosec0cot0 ccosec^cot^/-^ [=0,

(i 6 2
(^ do)

du h( .

={ 6 cosec d> cot0c cosec iL cot u/-V=0,
d<f>

2 (
r

<///
.'. a cosecd cot 0=: c cosecv// coti// >

I cosec(f> cot ^= c cosec ^/
cot

i/''r~
)

d\lt d\L u\l/
a cosec cot -p-= c cosec \i/ cot \L -r- -r- >

c?^
r ^0

rf^.

,
rf^ . d\L d\L

b cosecrf) cot0 = c cosec u- cotiL -; ^r ^0 </0 J^>

.'. a cosecScotQ-=. I cosec ^ cot ....
(3).

2m2

From
(2), ~T~==a cot + i cot0+ c cot ^,

2m2

ccot^= ---acot0 bcotty,

-c (1 +cot
2
^) =a (1 +cot

2
0),

-c

a cosec2

c cosec2
!//

of Substitute these values in
(3).

d(f>
c cosec2
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.,
I cosec2

./)
a cosec2

a cosec0 cot0---5-7=5 cosecd> cot*---^-,
c cosec^

r
c cosec2

;//

.". cot cosec
<f>

= cot
<ji
cosec 0,

COS0 1 _COS0 1

Similarly, by finding the partial differential coefficients

flu (iff

> > considering first
i//

and then 6 constant, it may be
do ay

shown that 0=^.

Hence B=(f>=^, or the faces are equally inclined to the

base.

(9.) Kequired the dimensions of an open cylindrical vessel

of given capacity, so that the smallest possible quantity of

metal shall be used in its construction, the thickness of the

side and base being already determined upon.

Let a be the given thickness, c the given capacity,

x radius of base inside, y=.altitude inside. Then

Whole volume V=TT (a?+ a)
2

(y+ a),

Interior volume c=ira?y, hence the quantity of metal

v c=Tr(x+of-(y+ a) c=a minimum,

:=a minimum.

v .
c I

, dy c 2
But y= s' T-= 5

TT ar nx TT x6

(C

\ "T
-

J
. Therefore the altitude must be

made equal to the radius of the base.
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(10.) 11-= 3? Saxy+yP ;
find the values of x and y which

render u a maximum or minimum.

x=a, y=a, w=a minimum when a is positive,

and a maximum when a is negative.

(11.) u=ao? bzPy+y
2

',
find the values of x and y which

make u a maximum or minimum.

^12.) u=aa^y2
o^y

2
a^y

3
',
find the values of x and y

which make u a maximum or minimum.

a a a6
x=-r> y= 'a>

M~TQO a maximum -

(13.) u=(\ ')
' (\ -} ; find the values of x

\ x yl \ c I

and y which render u a maximum or minimum.

(14.) w=acos2^+5cos2
y, where y=-\-x; find the values

of cos# and cosy which make u a maximum or minimum.

a
008^= -

2
'

),
a maximum with the upper, and

a minimum with the lower sign.

(15.) Divide a given number a into three such parts x, y,

and z, that -^-H -\ shall be a maximum or minimum,
2i o 4

and determine which it is.

(16.) Inscribe the greatest triangle within a given circle.

The triangle is equilateral.

(17.) A given sphere is to be formed into a solid composed

of two equal cones on opposite sides of a common base, in

such a manner that its surface may be the least possible :

find the dimensions of the solid, and compare its surface

with that of the sphere.

H 2
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(18.) Show that the greatest polygon that can be inscribed

in a given circle is a regular polygon.

y? 2 Z2

(19.) In a given ellipsoid, whose equation is -o+yrH 2
= ^

'

to inscribe the greatest parallelopipedon.

If x, y, z be the half-edges of the parallelopipedon,

a b c 8abc
a;= ^=' y~ 7^' z^ 7=' u ==-

-

1/8 V5 v/3 3f

(20.) To find a point P within a given triangle, from

which, if lines be drawn to the angular points, the sum of

their squares shall be a minimum.

If A, ,
C be the angles, a, I, c the sides of the triangle ;

The point is the centre of gravity of the triangle.

(21.) Divide the quadrant of a circle into three parts,

such that the sum of the products of the sines of every two

shall be a maximum or minimum, and determine which it is.

CHAPTER XII.

TANGENTS, NORMALS, AND ASYMPTOTES TO CURVES.

If y=-f (x) be the equation to a curve,

di/

y' y=.-j-(x x) is the equation to a tangent.
(J.3C

If u-=.fy (x, y)'=-c be the equation to the curve,

(x' x)+ (y
f

y)=0 is the equation to the tangent.
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The equations to the normal are

dx . du .
,

. da . .

y-y=- (x-x), and (y
f

-y)- (
xf

-x)=Q.

The tangent=y A/ 1 + /--^
> Normal=y \f 1 + ij-\

,

Subtangent = ?/ > Subnormal =.y-^-'J
dy

y dx

The portion of the axis of y intercepted between the

dy
origin and the tangent is y x=y .

dx
dx

The portion of the axis of x so intercepted isxy=x(>
.

Ex. (1.) Draw a tangent and normal to a given point P
in the common or conical parabola.

y*-=.kax is the equation to the curve,

dy_. m dy_2a
dx

"
dx y

dx ?y2
i' A s N o

Subtangent NT= y = f- =2 x.y
dy 2a

Hence to draw the tangent, let fall the perpendicular PN,
take NT=2AN, and join PT ; PT will be the tangent.

Subnormal NG=i/=2a.
dx

Hence to draw the normal, take JVG=2AS, and join PG ;

PG will be the normal.

(2.) Let y
n=an~ lx be the equation to a curve; find the

subnormal and subtangent.

, dy dy an
~ l

ny
n~i

--f=a
n
-\ :. -f-= ^-.

,

dx dx ny
n

/// <?//YW 1 fy7l 1 rvt ni

Subnormal NG=y^=^_=^_i=
*

=1L ;
' dx ny

n~
ny

n~*
ny

n~L nx
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Subtangent NT=y =^= -y-=nx.9
dy a"" 1

y
n

If n=2, y
2=ax, NG=.^ NT=2x, and the curve is a

2

parabola.

(3.) Let u=a? 3axy+y
3=Q be the equation to a curve;

determine the subtangent.

, dy dyay x2
:. (y

2 ax)-f-=ayx2
, ~r=-4--' dx y dx y

2 ax

.'. Subtangent NT=y-=y
dy ayx2

(4.) If y
2
=4:a(x+ a) be the equation to a parabola, the

origin in the focus ; show that the points of intersection of

the tangents with perpendiculars from the focus are deter-

V
mined by the equations x

{

= a, y,=^'2

AS' the focus, AS=a, Stf=x, AN=x+a, NP=y,
y
2
=4:a(x+ a) . . . (1), eq

n
. to curve,

y.-y=(*,-). (2), eq
n

. to tan.,

dx
T
~

A 8 N

y t

=
-j-xl

..... (3), eq
n

. to ppdr. from origin,
i/

dx dy dy
.. by subtraction, y=- -*,- *.+*, ...... (4).

dx y dy 2a

dy dx\ dy+ Xl= X~y'
'' by substitutio11
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2ay 2 y y 2 2y
I

"
a

'"""

dx y t \_y

(5.) The equation xmy
n=a, which includes the common

hyperbola, is said to belong to hyperbolas of all orders. Find

the subtangent at a given point in the curve.

xm= >

y
n

^ . dx any
n~ l an dx anmxm~ l-= '- = xr> - = >

dy y^
n

y
n

dy mxm 1

.y
n+l

dx nan n
:. Subtan. NT=y~= -. =

;
>xm= x.

dy mxm~ l

y
n mxm~* m

(6.) Given two points A and B, find the locus of P when

the angle PBA is double of the angle PA, and draw an

asymptote to the curve traced by P.

A the origin, ABa, AN=x, NP=y, A= 6, =26.

PN y PN y 2tan0

AN x BN a x
p

y &__

1 o B N

.'. y
2z=3x2

2ax, the equation to the curve.

Whence, if y=0, x-=

curve will pass through 0.

2 2
Whence, if y=0, x= a, and taking AO=--^AB, the

o 6
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The origin may be changed to by putting x
{

= ON, and

substituting the resulting value of x in the equation to the

curve; whence y=x[3-\-- ) ,

\ X '

D

/. y=:a\/3 j= is the equation to the asymptote.
v3

Ifx=Q, y==> ify=0, ;=+ ->

v 3 3

.'. -r-= -\/3=tan 60, and the asymptote cuts the axis of
dx

a; at an Z of 60, and at a distance = from the point 0.
o

3Cj I fTOfj

(7.) If y
2=- be the equation to a curve; find the

oc ~
cx>

equation to the asymptote.

.*. y= (fl5+ a) is the equation to two asymptotes, and /

if x=0, y=a, :. an asymptote cuts the axis of y at the

distance a from the origin; and v ify=0, = a, .". an

asymptote cuts the axis of x at the distance a from the

origin.

dy
Again v -j-=:l=tan45 or tan 135, .'. these asymp-
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totes cut the axes at an angle of 45, and are consequently
at right-angles to each other.

Putting x=a in the equation to the curve, we have

" '

.". there is another asymptote parallel to the axis of y.

(8.) Ify 2= (x 1) Vx 2 be the equation to a curve
;

find the point and angle at which the curve exits the axis

of x, and the values of x and y when the tangent is perpen-

cular to that axis.

Ifa;=0, y 2= /^2, :.y=2</^2.

x33x2 x2+3x+2x6=Q,
x2 (x 3) x(x 3)+ 2(a; 3)=0, /. x=3.

3x5

Hence, if x= 3. = tan0= ---= -=2, and the

curve cuts the axis of a? at a distance 3 from the origin, and

at an angle whose tangent is 2.

Again, ifa=2, Vx 2=0, .'. y 2=0, y=2,

dy 3x-5 6-5 1
-^-= =-= =00 when a;=2.
e& 2-/aj 2

Hence the tangent cuts the axis of a; at an angle of 90,
or it is perpendicular to that axis when x=2 and y=2.

(9.) If from any point P in an ellipse a straight line be

drawn to the centre making an angle with the normal,

and if I be the inclination of the normal to the axis major ;

show that tan0=
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Let CA -a, CB=b, CN=x, NP=y,
B

z CPG=6, CGP=l.

b2 b2x2
y
2-=(a2

a;
2
)
= b2

^-
> eq

n
. to ellipse.

*=-3 Cff=z-> by a property of the ellipse,
aj aj

tan?= = -^ = -
>

b2y
:. -=

x a

b2

also -=tan PCN=-z tan?,
a; a"

B=CPG=PGN-PCN,

I13riw p/Y ,n -
tan =tan (PGN PCN)= - -

y
1 +i&nPGN-

b2

tan? tan?

~b2
~~

l+tanZ'-rtan?
a,
1

a2tan I b2tan I tan I (a
2 b2)

'

(10.) From the centre C of a circle a radius CR is drawn

cutting the chord BD in M, MP is drawn at right-angles to

BD and equal to MR
;
determine the locus of P, and draw

the asymptotes.

Let BD, CO be the co-ordinate axes,

A the origin,

CR=a, CAc, AM=x, MP=y. Then

MP=MR=CR-CM sf

CR-VCA 2+AM2
,
or

ya V#+i?}
the equation required.
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If a?=0, y-a-c=CR-CA=CO-CA=AO.

If =0, x= V~a?^?= VCF* - CA*

85

*-CA)=VAF-AO=
:. x=AD or AB.

If #=oo, y=ao. Hence the curve passes from

through B and D to infinity.

To determine the direction of the tangents at these three

xdy
points ;

= tan = ~-
dx

:=0 if x= Q, :. at the

tangent is parallel to the axis of x.

dy x AD
dx

which
VCA2+AD2 a

determines the direction of the tangents at D and B.

Again, putting x,= ON= CO CN= a (c+ y), we have

y=.a c x,j and putting y t =:NP=x; and substituting

these values of x and y in the equation to the curve, the

origin will be transferred to 0. Thus

a c :,= vc*-\-y
2
,

v/c2+ 2/,

2=c+ ^i>

c2+ 2/,

2= c2+ 2 cx
t+ x,

2
,

/. y
2=2cx

)+ x 2
,
which is the equation to the rectangular

hyperbola.

To find the equation to its asymptotes,
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.'. y=. + (x+ c)
is the equation to the two asymptotes;

and Y putting y=Q, we have x= c, and ^
putting x=Q, we have y= c

',
also

dij
=tanfl=l ;

.'. the asymptotes cut the axis OF
dx

at / s=45 and 315, at the distance c from the origin 0.

Take OT=CA, and draw the lines TS, TS
t
at Z s=45

and 315 respectively, these will be the asymptotes.

(11.) The normal to the curve whose equation is ?/
2=40#,

4
is a tangent to the curve defined l>y y

2
=H7=- (x 2a)

3
.

2l(Ck

y*=kax, y-= > .". y,y= (x,.v), eq
n

. to normal,
dx y Jj a

y /x+ 2a\
.'.y.

=
Ya X>+y \ 2a )'

Let y,= 0, then

x
t
=x+ 2a=psirt, cut off from axis of x.

=log + 3 log (x-2o),

</x y x 2a ^
</y 3 v

</x 2 , x+4a
.'. x y = x (x 2a) = - = part cut off from

(l\ O O

axis of x.

Hence, that the normal and tangent may cut the axis of

x at the same point, we must have the equation

- =x+2a, :. x=3#+ 2a.
o

But, the angles they make with the axis of x ought to be

the same, and since

dx__y_ , <fy_3 y

dy~2a </x~~2'x-2a'
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y*_x_ 9y
2

_
a2 a x-2 2 3a V

/. 3#=x 2a, x=3#+ 2#, the same as before.

Hence, the normal and tangent, cutting the axis of x in

the same point and at the same angle, must be coincident.

(12.) In the curve defined by y^-=.aa?-\-a? prove that the

portion of the axis of y intercepted between the origin and

a i x \|
the tangent = - -

o \a-\-xi

dy 2 ax2 + 3 3 3 ?/ 2 a,r2 3 j

y^y-X-=y---
3
_=- _

3
-F--

3 /
3

A'
3

3 {(a + x)a?}* 3 (a+*)t*i 3

(13.) If 3/i=<zs xs draw a tangent to the curve, and

show that the part of the tangent intercepted between the

axes = a, and that perpendicular on tangent = vaxy.222 !/ P

3 J^ 3

-

dy 2 ,

.". AD=.y x-j-=a5y^'ax

dx ( XT\ ! 2AT=y ---x=y (
--

r
\ x os*y*i

dy \ y*/
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.'. DT=a= part of tan. intercepted between the axes.

I'D AD

.'. AF=d3x%y^= length of perpendicular on tangent.

(14.) Suppose a rigid rod BP slides along the line Ax in

such a manner that its extremity P shall

be constantly in a given curve whose equa-

tion is y=/(-^)j and let BQ be an nth
part

of BP; determine the equation to the locus

of 0.

Let BP=a, AN=x, NP=y, AM=xn MQy t
. Then

MQ : NP :: BQ : BP, or y t
: y :: -

:

n

ButAN=AM-NM=AM-(NB-MB)=x t-(nMB-MB)

:, y t -=.-'f\x,
-- v a2 2

y,
3
[,

the equation required.

(15.) Determine the subtangent to the curve of which the

normal = 2 a2 (abscissa)
3

.

Let x be its abscissa, y its ordinate. Then

/jft (ill

V Normal PG=y-^-i .'. y -/-=%
2*3

> an equation
( ( !' < > >'

V2

evidently derivable by differentiation from = = ->
2i J

.*. y=ax2 is the equation to the curve.
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Ji, 2a*a* 2A-8
Now v --=-=- =

:. Subtangent NT=y~^=-.
dy 2ax 2

-,

dy 2ax

The equation to the curve may be put into the form

x2=~ y, therefore the curve is a parabola, whose parameter

is ? and whose line of abscissae is perpendicular to the hori-

zontal axis.

/ * -*\

(16.) The equation to the catenary is 2y=c \e
c+ e c

) ',

find the length of the normal.

dyi e c 2+ e c
dy

2
e
c 2+ <

dx>

;. normal PG=y

(17.) If y
n

(a+ ba;)y
n- l + (c+ ex+fa;'

2
)y

n-2 &c.= be

the equation to a curve of n dimensions, prove that, if each

ordinate be divided by the corresponding subtangent, the

sum of the quotients will be a constant quantity.

Let r1} r.2 ,
r
3 ,

.... rn be the values of y which satisfy

the given equation, and

8i> sn> S3> ' sn ^G subtangents corresponding to these

values of y ; then, by the theory of equations,

i 2
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dr^ dra df3 drn

dx dx dx
'

dx

and, taking the differential expression for the subtangents,

r^dx r.^dx rndx

dr
*

ar.2 drn

&i dx s$ ctc 8n (L&

Hence -\ '--\
-

, . . +=b.
1 3 H

(18.) If y
4 x4+2bx2y=Q be the equation to a curve;

find the equation to the asymptote.

Assume y=xz, then otz4 x*+2 bxzz= 0,

T
JL

~~* X """**
^2*

when z*= 1 or z=. 1 .

dx

"Which both become innnite

, 2\ o s 01
r2

) -^=2^ Zbxy, -j-dx dx

AT)~~X ~

bxz=
^ 3

- -
5 which, when z=l, and consequently

T, A r>
^'r * ^

A-=OO, becomes -4x>= ---=---= -
b 2

Hence y=x -> y= x are the equations to
/j A

two asymptotes.
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(19.) Investigate an expression for the subtangent : and

in the parabola of the th
order, whose equation is yaxn

,

find the subtangent and subnormal.

Subtangent= x, subnormal=7*a2:e2n
~

1
.

99

b2

(20.) The equation to the ellipse being y
2=

^ (2 ax x2
) ;

a

find the subtangent and subnormal.

V ft n* /)'2 7j2

Subtangent= > subnormal= (a x\ax a2

dij

(21.) Prove that ~ equals the tangent of the angle at
ax

which a curve, referred to rectangular co-ordinates, is inclined

to the axis.

(22.) 2/
2=a2 x2

being the equation to the circle, the

origin at the centre, show that the curve cuts the axis of X

at an angle of 90.

(23.) y
2=2axx2

being the equation to the circle, the

origin in the circumference, find the subtangent and normal.

V /7/ {*

Subtangent= ? normal=a.
Cl ~~QG

(24.) If an ordinate NP in an ellipse be produced until it

meets the tangent, drawn from the extremity of the latus

rectum, in T
; prove that the distance of P from the focus

is equal to the distance of T from the axis of abscissae.

(25.) In the ellipse, if it be assumed that #= acos;

prove that the equation to the tangent will be

bx cos t+ ay sint=ab.

(26.) Find the locus of the intersection of pairs of tangents

to an ellipse, the tangents always intersecting each other at

right angles. x2 +y'
2=a?
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(27.) y^=- being tlie equation to the cissoid of
Ct>
~~f

*X/

Diocles, find the equation to the tangent, and show that

there is an asymptote which cuts the diameter at its extre-

mity at right-angles.

Equation to tan. y = \
- {(3 a #)#, ax\

((2 a asf)

(28.) Prove that half the minor axis of an ellipse is a mean

proportional between the normal and the perpendicular from

the centre upon the tangent.

(29.) In the logarithmic curve, whose equation is y=a*,
show that the subtangent is equal to the modulus of the

system whose base is a.

(30.) Prove that the curve whose subnormal is constant

is a parabola.

I2

(31.) In the hyperbola, whose equation is y
2=^ (Zax+<x?),

show that y= (x-\-a) is the equation to two asymptotes
a

passing through the centre and equally inclined to the axis

of #.

(32.) Draw the rectilinear asymptotes of the curve defined

ty y
4 +a?y=a2x2, and determine the form of the curve at

the origin.

(33.) Let or
3

y
s +aa?=Q be the equation to a curve;

show that the equation to the asymptote is y=#-f-
o

(34.) If ay
s=l3? <?xy be the equation to a curve

; show

(fj\

= / rf \

1 (x -} is the equation to the asymptote.

(35.) In the common parabola, whose equation is y^=^ax,
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find that point at which the angle, made by a straight line

from the vertex with the curve, is a maximum.
x=2a.

(36.) A rectangular hyperbola, and a circle whose radius

is 2 a, have the same centre
;
find the angle of intersection

of the two curves. \/15
Angle=tan" 1

-r

(37.) Find that point in an ellipse at which the angle

contained between the normal and the line drawn to the

centre is a maximum.

(38.) Determine the angle at which the curve, called the

lemniscata of Bernouilli, whose equation is (y
2 ^-^

2
)
2

= 2 a2
(a?

2
y
2
), cuts the axis of x.

(39.) If A be the vertex, /"and Q corresponding points in

the cycloid and its generating circle, prove that the tangent

at P is parallel to the chord AQ.

(40.) The centre of an ellipse is the vertex of a parabola,

the axis of the parabola intersects the axis of the ellipse at

an angle of 90, and the curves also intersect each other at

right angles ;
show that major axis : minor axis :: v2 : 1.

(41.) If y
2=mx+na?, show that an asymptote cuts the

axes at points indicated by x=-- and ?/= r-

2

(42.) Show that the locus of the intersection of tangents

to the rectangular hyperbola and perpendiculars upon them

from the centre is the lemniscata.

(x \ ci}^

(43.) Draw the asymptotes of the curve y
2=}-4> and

(x a)
6

determine the distance of its minimum ordinate from the

origin.

(44.) Find that tangent to a given curve which cuts off

from the co-ordinate axes the greatest area.
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(45.) Draw a tangent to the curve, whose equation is

y=ax m
,
and show that the tangent always cuts from the

axis of y a portion equal to an mth
part of the ordinate at the

point of contact.

(46.) If f+x? 3^=0, show that y= ae+1 is the

equation to the asymptote, and that the maximum ordinate

is at the point indicated by #=2.

(47. ) If C be the centre of an ellipse, and NP any ordinate,

and if in NP a point Q be so taken that its distance from

shall be equal to NP
;
show that the locus of Q is an ellipse

whose major axis is the minor axis of the given ellipse.

(48.) Draw a tangent to the curve whose equation is

a?v=. r,' and determine whether the curve has an asymp-
a2+ x2

tote.

(49.) ABD is a semicircle, centre C and diameter AD
;

EF is a chord parallel to AD, CQR a radius cutting EF in

Q ; QR is bisected in P. Find the locus of P.

ay=(2y-b) (^+y2
)i

(50.) Show that the curve, whose equation is y? -\-aby

axy=Q, has a rectilinear asymptote at the distance b from

the origin, and also a parabolic asymptote, whose equation
** 12

is ay T^2
\
x

<7 i
the latus rectum of the parabola

being a, and its axis parallel to the axis of y.

(51.) BAG is a triangle, right-angled at A
;
a straight rod

moves through the fixed point C, while one end slides down

the line BA : show that the curve described by the other

end is a conchoid whose equation is o?i/
2
=(x />)

2
(

2 #2
),

and determine its subtangent.
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CHAPTER XIII.

POLAR CO-ORDINATES. SPIRALS.

Ifr=/(0), orp=f(r), &ndu=-'> then

Tangent of angle (0) contained by radius vector (r) and a

tangent to the curve, is tan SPY= r =ti -

dr du

Perpendicular on tangent,

SY=p=

dA

J0_ p
dr rvV2

/>
2

Ex. (1.) Find the polar equation to the common parabola.

SP=r,

2a

3S
2

(2.) The equation to the spiral of Archimedes is r=ad ;

find the angle between the radius vector and tangent, and

the subtangent.

dti
' dr a

f r

Subtangent ST=r^=dr a
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(3.) If r=a (1 + cos0), find the equation between p and r.

1 1 du a sinfl -

-=a+ acosd. .". =---
T7i
=

7 ;

-
~ZA9*

u a + a cosd dO (a + a costf)-

du\*_ a2 sin2 d _a2
(l-cos

2
fl)

0/
~

(a + a cos 0)
4
~

(a+ a cos
ft)

4
*

But cos0=-- a, rt
2 cos20= ---

(-a
2

,

w J M

2a 1 1
/.a2 a2 cos20=----.' a+ acosd=--

u u^ u

_ _
M w2

, 2a--

(4.) The tangents at the vertex and extremity of the

latus rectum of a conic section intersect
; prove that the

distance of the point of intersection from the vertex is equal

to the distance of the focus from the vertex.

Let A be the vertex, $ the focus, and T the point of in-

tersection.

The equation y= -s/2 ax-\- x2 will, by using

the negative sign, comprehend all the conic

sections excepting the hyperbola ; and, by using

the positive sign, it is the equation to that

curve.

dy
Alsoy, y=-y-(#, x) is the equation to the tangent.

Differentiating the assumed equation,
-J-= .

dx a



SPIRALS. 97

(111

and substituting the values of y and ~- in the equation to
ctoc

the tangent, we have

a v

But at the origin #,= 0, and x=AS=.m suppose. Then

b f-- bm a+

bm

Now a2=b2+ (a+m)
2
, by a property of the curve,

(5.) In the ellipse, if p be the perpendicular from the

centre on the tangent, and r be the distance of the point in

a2b2

the curve from the centre, prove that p2= --

<r+ b2 r2

Perp
r CP=r, Z PCN=d, then x=r cosd, y=r sin0 ;

1C^ ?/

-^+V^=1, equation to the ellipse.
a* b2

/cos
2 sin2/cos sn\

I _ ^ n*A I -- _i__ I I

b2 \ a2 b2 )~

a2b2 a2b2
"

i2cos2 9+ 2sin2 a2 (1
- e

2
)
cos2 + a2sin2 d

where 1 e2=

a2b2 b2

.'. y -

a2 a2e
2cos2 1 e

2cos2d

b2
v

du_ 1

</0~i2
IW/ M~* ^1 e2cos2

K



98 POLAR COORDINATES,

l e2cos29 e*cos29(lcos2
0)

~fi~ b2(l-e
2cos2d)

1 2 e2cos2 + ^cos4^+ e4cos2

b2(l-e
2cos28)

1 l-e2cos2 I2 I2 e2

But ^=-775
- >

r2 0*

2i2

l-2 + l-

1 r2

,9

"V

__
a2 r2 \ a2 / a2 r2

"
02+42 r2

(6.) In the ellipse, if .4, be the origin, the equation is

I2

y2=-r (2ax ^2): let ^ be the pole, J.A
lSP=e, and

a-2 N

$P=r ; show that the equation referred to polar co-ordi-

. . a(\-<?)
nates is ^=^ --

7:*
1 + <?cos0

2

(7.) The equation to a curve being y^(^r
ro+ ao7

TO~ 1

)'" ;

determine the polar equation, and show that an asymptote

cuts the axis of abscissae at an angle of 45, and at a dis-

tance =-- from the origin of co-ordinates.m

(8.) In the hyperbola, if be the pole, the polar equa-
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t O -I \

tion will be r= r ^- : if the centre be the pole, the
1 +ecosd

&

polar equation will be r= -
v e2cos2 tf 1

(9.) Show that the polar equation to the lemniscata of

^3
Bernouilli is r2=2 a2cos 28, and that p=^^'z

(10.) Show that the polar equation to the conchoid of

icomedes is r=a-\---

co-ordinates being x2y
2=

Nicomedes is r=a-\---> the equation between rectangular

(11.) Show that the equation r=-- represents two~~

polar curves, one having an exterior and the other an interior

asymptotic circle, and exhibit the general form of the two

spirals.

(12.) The polar equation to the cissoid of Diocles is

r= 2 a tan 6 sin . Prove this.

a2

(13.) The equation to the lituus is i3"=. ; show that the

subtangent =^

(14.) In the cardioid r=a (1 cos
9),

and if r, be a radius

in the direction of r produced backwards, r
>
=a (l + cos0) :

show that
2<f)
= d.

(15.) If the polar equation to a hyperbola, referred to its

/ 2 1 \

focus, be r=r-^--'- i show that there are two asymptotes
l+ecosd

intersecting the axis of x at a distance ae from the origin, at

angles whose tangents are+ and -- respectively.
(t ct

(16.) Tf fl= be the equation to a spiral; show
v 2ar r2
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that a circle whose radius is 2 a is an asymptote to the

spiral.
an

(17.) If 0= ' and nan=ln
;
show that the equation

between the radius vector and perpendicular on tangent is

lnr

CHAPTER XIV.

SINGULAR POINTS. TRACING OF CURVES.

A curve is convex or concave to the axis according as

d2
y

y and
-^

have the same or opposite signs.
Ci3/

To determine whether there be a point of contrary flexure,

</
2
?/we put = or oo

; and if a be one of the values of x so
dor

found, we substitute successively a-\-h and a h for x in

(J- tl U /

2
'} then if have oj^osite signs, there will be a point of

U*X^ (JLX^

contrary flexure denoted by x=.a.

dpAt a point of contrary flexure in polar curves y-=0.

If any values of x and y make -=:> this circumstance
dx

generally indicates a multiple point.

/ d 2u \
2 /d2

u\ /d 2u\
For a true double point I

-
) -7-5 -7-5 > .

\dxdyl \dx~l \dy*I

I d 2u \
2 /d 2

u\ /d2u\
For a point of osculation (-: } [ ~T O (

-: =0.
\dxdyl \da?J \dy

i>

i d 2u \
2 /d2u\ ,d 2u

( )

-
( 2) ( 2

i d 2u \
2 /d2u\ ,d 2

u\
For a conjugate point

( )

-
( 2) ( 2)

< 0.
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?/

At a cusp, if x=a, -j-
has but one value; and, substitutingaoo

d z
y

successively a+ h and ah for x, ^ has two values.
da?

For the ceratoid or cusp of the first species, the values of

<Py,have opposite signs.
CLX

For the ramphoid or cusp of the second species, the values

d2y
of ; have the same sign.

Cl*X/

Ex. (1.) If the equation to a curve be y= v aP+cx4
;

(t

show that the origin is a point of osculation, ascertain if

there be any maximum ordinate, and determine the general

form of the curve.

It is obvious that, by giving oc successive positive values

from to oo
, y will have successive positive and negative

values from to oo
, consequently there are two similar

branches extending from the origin to infinity, one branch

on each side of the axis of x to the right of the axis of y.

dy 1 5x4+4: cxs x 5x+4ccNow = -
;

= =0 when x=0,
dx a 2Vx5 +cx* 2a Vx + c

y
and Y when #=0, y also =0, and ~ has

dx

two values, one positive and the other ne-

gative, each =0, therefore the axis of x is

a common tangent to the two infinite branches at the origin ;

hence the origin is a point of osculation.

yZ
Again Y y v x + c

; when x= c, y= 0, and while
9

x takes successive negative values from to c, y will take

successive positive and negative values from to again,

K 2
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and therefore to the left of the axis of y there is a loop or

nodus.

, dy x
And v =

dx 2a

determines the position of the maximum double ordinate ;

dy
and v "= tan0=oo when#= c, the tangent at this point

CIQC

intersects the axis of x at right-angles.

Take AB=c, and draw the tangent TBt^_AB, take

4 32 /c\4
AN=-c, and draw the double ordinate PN = (-) 5

5 \5/

4
which is the value of 2y corresponding to x= c; the

o

loop will pass through A, P, B, p.

vx
(2.) Trace the curve, whose equation is y= ^(

v

and show that there is an oval between #=0 and x=a
;
de-

termine the position of the maximum double ordinate, and

exhibit the form of the exterior branch.

/v x
^

v a

Let #=0, .*. j/=0,

is
,

_,. ,
.

Jbirstly, y=

x>a, y is impossible^.

va
Take AB=a. "A

Then, . while

x increases

from to a, y has positive

Putting x for x, y is impossible, j and negative values from

to again, .'. there is

a maximum ordinate somewhere between A and B, and AB
is the axis of an oval.

Sj
dvy r-

JNow = v a
dx
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.
a .

.. -== -^z:-) 3#=, .. a;= denotes the point where
v x va 3

the maximum double ordinate cuts the axis of x.

"y OC

Secondly, y= (a+ x).
v a

Let #=0, .'. y=0, 1 Draw P=2a. Then,

x<a, y is
, V while # increases from

07= a, y=2a, to infinity, y has posi-

x>a, y is
,

tive and negative values

x=cc
, y=oo, from to infinity; there

Putting x for #, y is impossible. J is a branch above and

below the axis of x exte-

rior to the oval.

No curve exists to the left of the origin.

(3.) y
2
(

2+ iT
2
)=:^

2
(a

2 #2
)

is the equation to a curve;

trace it, determine the angles at which it cuts the axis of x,

and find its maximum ordinate.

y=i

If x=Q} then y=0 Put x for x, then

x<a, y is possible if#=0, y=Q
x=a, y=0 x<a, y is possible +
x>a, y is impossible. <r=a, y=0

x>a, y is impossible.

Take .4.3= a, .4&= a, in the axis of x, and the curve

will pass through the points A, B, b.

And v when x > a, y is impossible, the curve cannot

extend beyond B, b.

Now 2v $=**.{



SINGULAR POINTS

and putting x= and a in this expression, we have

/lit /4 ^4= - = -+- 1 = tan 45 or tan 135.
dx (a

2
)* (a

2
)* a3 - a

2a4= = oo =tan 90.
(2a

2
)t(0)

.'. the two tangents at the point A are inclined to the

axis of x at L s=45 and 135 respectively, and the tangents

at B and b are _L to the axis of x : :. the point A is a

double point.

/a - oc

To find the greatest ordinate, y=X' A / -x ->>
a max.

r=0,

Hence the greatest ordinate cuts the axis of x at points

denoted by x= a\J v2 1 and a\r v8 1, and the

length of this ordinate may be ascertained by substituting

these values of x in the equation to the curve. Thus

: . /
1- A/V

=a\/ */2- 1 \/ v/2- 1=
(
\/2- 1)

=MP, MP,, mp, mp,.
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Ci X
(4.) If y= r,'

show that there are points of contrary

flexure when #=0 and av3, that the curve cuts the axis

of x at an angle of 45, that the axis of x is an asymptote to

the two infinite branches, and that there are maximum or-

dinates when x= +a and a.

>..

Let #=0, .*. y=0 Put # for #, theny=

x<a, y is + Let x=Q, :. y=0
a

x=a, y~

x>a,

y is

a?=oo, y=0. x>a, y is

x=<x>
, y=0.

Take AS=a, Ab=a, and draw

# a
the ordinates ^>0, ^*?i equal to ^and

respectively, the curve will pass

through the points A, Q, y,, its right-

hand branch being above the axis of x, and its left-hand

branch below it, the two branches meeting that axis again

only at an infinite distance from the origin A . .', the axis

of x is an asymptote to the two infinite branches.

_W ~

^ .= Q
>

lf x=aV* or 0.

Substituting a </3h, a \/3 + h respectively for x, we have
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which is negative, since h< a v3
;

which is positive.

Hence x=a v3 indicates a point of contrary flexure ; and,

substituting this value of a? in the given equation, we have

y= 1 Take AN=a\/3. and draw NP -. > when
4 4

P will be a point of contrary flexure.

Also substituting A, + A respectively for x,

d2
>/_-2a

2h (A
2 -3 a2) J 2

y"

one positive, the other negative. .". the origin A is also a

point of contrary flexure.

d2
yHence also, y being positive and 5 to the left of NP

(tOu

negative, the curve from A to P is concave to the axis of x,

and consequently beyond P it is convex.

Again / as x increases y at first increases and afterwards

decreases, having various finite values between its primary

value and its ultimate value 0, there will be a maximum

ordinate somewhere on each side of the origin.

. dji a^x2
)

-7-= . \
,

oxo =0, .- a2 x2=0, x=a.
dx 2 *

But when x=a, y=' Draw BQ=-> it will be a
- Z

maximum ordinate.
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d'u

By substituting for x in -=- we liave
dx

a4
tan9= -=1=tan 45. .'. the curve cuts the axis of x at

a4

the origin A at an L of 45.

/ Cl I -7**

(5.) If y=x- A / --
;
show that the branches of theV a2 3?

curve pass through the origin, and are contained between

two asymptotes perpendicular to the axis of x.

Let x=0, :. y=Q Put x for x, then

x<a, y is possible if #=0, y=0
x=a, y= c x<a, y is ip

#>, y is impossible. #=a, #=
# >, # is impossible.

Take AB=a, Ab= a; then, since at the

origin A the ordinate is 0, and then as x in-

creases the ordinates increase until x=a, when

an infinite ordinate passes through and,

since the values of y are both positive and ne-

gative, a branch extends on each side of the axis of x.

Also, since when x is negative, the ordinates take values

exactly corresponding to those when x is positive, the curve

has similar branches to the left of the oriin.

, dy
Again =----

j-
: and, putting #=0 and

dx (aPx2
)? (a

2+ x2
)?

di/
a in this expression, we have tan0=-j-=l and <x> .

doc

:. tan 8 = 1 = tan 45, tan = 1 = tan 135, tan d = QO

=tan90.

Hence a tangent to the curve cuts the axis of x in the

origin A at an angle of 45, another through the same point



108 SINGULAR POINTS,

at an angle of 1 35 : and at B a tangent to the curve is _L

the axis of x, and is coincident with the infinite ordinate.

This tangent is consequently an asymptote, the branches of

the curve do not extend beyond it, and they are convex to

the axis of x.

(6.) If (y &)
2
=(# a)

5
',
show that there is a ceratoid

cvisp when x=a, and that the tangent at that point is pa-

rallel to the axis of x.

If x=a, y=-l>. Take A=a, P=l, then P is the point.

when x=a ;
.". tan0=0, and the tangent to the curve at

the point denoted by x=a is
||
to the axis of x.

7*> 1 e*

Again ^-
= (xa)?=0 when x=-a ;

and, putting a+ h, a h successively for x,

72 1 K

-==+- vh. which has two values, one +, another .

dx* 4

rfV 15 ,j- .

-^^-j-v n, which is imaginary :

CbiX/

and since if x= a, -r-=0. -7^=0; andifa;=a h, they are
ax dor

both impossible .". the curve cannot extend y

d2
y

to the left of P : also v if x=a+ h, -^
has

A

two values, one positive and the other negative, .". at the

point P there is a cusp of the first species.

afl2

(7.) Show that the curve, whose equation is r=
2_ , > has

a point of inflection when r= > and rectilinear and circular
2

asymptotes.
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(ra) 2=r, /. 0= A / r
.

V ra
a dd p

-=
;

-

3 But = -
s -,

2r(r ) dr r(r2
p'
2
}?

dd (r-a)
2 a _

,
dd

- '
_ ,-rrTT^ . IllIT

dr
2 A / r 2r*(r a)* dr~r(r2 -V)

\ ra
p a, p

2 a?r

a)i' r2
/?

2
~

4 (r-a)
3

'

ty 7)* V'" 4- 1 7* CL i 7* 4 i T" _ /j \3

p* ~f
1 4 (r a)

3 +rt2r
* * F /--^^^

v 4
(? a)

3+a2

3 i /,-^^
-=- 3 12 (r a)

2+ a2
ar* v 4 (r r+ a2r ar^--r-^

__2____2v/4(r-a)
3+aV_

r 4(j a)
3+ a2r

.-. 3 {4(r-a)
3+aV}-12r(r-a)2-a2

r=0,

13a 3a
r2--y-r=-

2
,

..r=T -

3
Hence there is a point of contrary flexure, when r=~ a.

2i

1 2 1

Again =- Let r become infinitely great, then
7* $ (/

i= =0, :. 62-1=0, 0=1.
r oo

^ ar __ / r \|

rfr~ 2r-ai~
+

2 \r-J '

2r*(r a)*

and, when r becomes infinitely great,rill-
1 A- **ra a a 10

:. Subtangent ST=r2 -=+ :

dr 2
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and, since ST remains finite while SP is infinite, a tangent

may be drawn which will touch the curve at a point infi-

nitely distant from the origin ;
this tangent is therefore a

rectilinear asymptote : and v and ST have each two

values, .*. there are two rectilinear asymptotes.

1 2 -l 2 -l 1

Again, let r= a, .. -= r > 1= ^ =1 -^>
ab^ tr i)

:, 0=oo when r=a.

Also 0= A /
'

' which is impossible when r<a.V ra
Hence v r=a makes infinite, and r<a makes im-

possible, there is an asymptotic 0, radius =a, within the

curve.

In the logarithmic and many other spirals the curve makes

an infinite number of revolutions about the pole before

reaching it
;
hence the pole may, in such instances, be con-

sidered as an indefinitely small asymptotic circle, that is, an

asymptotic circle whose radius =0.

The equation to the logarithmic spiral is r=ae
,
or r=aem

,

e_

or r=cea
;
r increasing in a geometric ratio, while increases

in an arithmetic ratio
;
the radii including equal angles are

proportional. Its evolute and involute are similar to the

original spiral

(8.) Trace the curve whose equation is r=-a (2 cos0l).

Let 0=0, :.r=a(2+ i)=3a,

0=30, r=a(</3-f l),whichis<3a,

0=60, r=a(l + l)=2a,

0=90, r=a(0 + l)=a,
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Let 0=120, :.cos0= cos60= -, r=a( 1 + 1)=0,

61=150, cos0= cos30= -<r-> r=a(
which is < 0,

0=180, cos0= 1, r=a( 2+ 1)= ,

0=210, cos0= cos30= 5-, r=a( A/3+ 1),

which is < a,

0=240, cos0= cos60=--> r=0,
2i

0=270, cos0=0, r=a(0 + !)=,

0=300, cos0=cos60, r

0=330, cos0=cos30, r=a
which is >2a,

0=360, cos0=l, r=a(2 + l)=3a.

Divide the Q ce of a into 12 equal parts, and draw

radii through the points of division. Take A=3a, AP,

Ap each =a(V
/

3 + l), 4(7, ^JT each =2 a, ^Z>, ^.ff each

=.
Take ^.E", ^^' each=a(- v/3 + 1),

and ^4^"= -a. These

three, being negative values of r, must be measured in an

exactly opposite direction, as AE, AF, AG.

The curve, which is the trisectrix, will pass through the

points B, P, C, D, A, H, K, p ; and the interior oval will pass

through A, E, F, G.

Taking r=a (2 cos 1), a precisely similar curve is pro-

duced, but turned the contrary way.

Taking for 0, the same curve is produced,

V 2cos( 0)=2cos0.
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(9.) Show that the curve, whose equation is (.p+ .r
2
)
3

=4a2
;r
2
i^
2
,
has a quadruple point at the origin, and that

there are four loops or ovals
; namely, one in each

quadrant.

Let the equation be transformed into one \inder polar co-

ordinates, putting x=-r cos 6, y=rsmd.

(r
2sin2 + r2cos20)

3= 4 2r2sin2 r2cos20, r6= 4aVsin2 cos20,

r2=4 2sin20cos20, r=2asin0cos0. .'. r=asin20

1st quad. If 0=0, r=0, By put-

0=15, r=rin30=

0=30, /=

= 45, r=a sin 9 = a,

0=60, r=

9=75, r= Binl50=
2

for the

curve is

reproduced.

Take the several

v/3 values of r at the

2
'

corresponding

angles.

In the second

and fourth quad-

2nd quad.

3rd quad.

4th quad.

0=90, r=asin!80= 0,

a rants, the values
0=105, r=asm210= ->

& of r, being nega-

Q TKK QOA
0=195, r=asm390=->

* measured in op-

0=285, r=a sin570=- . P site d^"

Hence, there

will be an oval whose axis = in each quadrant : and the

origin is a quadruple point.

(10.) If r=atan0, show that the asymptotic subtangent

is a, and that the curve is included between vertical asymp-

totes.



TRACING OF CURVES. 113

Let 0=0, :.r=0, Let 0=7r+ 45, :.r=a,

STT

0=45, r=a, 0= , r=oo

TT STT

0=, r=oo, 0=-^--f45, r= a,

0=135, r= a, 0=27r, r=0.

e=Tr, r=0.

Take therefore S=a at an angle of 45 with the axis

of x, the curve will pass from the origin $ through B to

infinity.

And v those lines are said to be
||
which coincide only

at an infinite distance, and v the asymptote will ultimately

coincide with the curve and consequently with SP when

both are infinite, .'. the asymptote must be drawn
|| SP.

There are similar branches in all the four quadrants.

XT n , 2o\Now =a(l+tan
2
0), T~=dd ^ dr

dd 2tan2 tan2 ^ TT

r2 = -n
--T-T=^ ^-=a =o, when 0=^-

dr (l+tan
2
0) sec2 oo 2

:. ST=r2 =a, the asymptotic subtangent.

Take ST=a, and draw TP
t \\ SP ;

TP
t produced is the

asymptote. Hence, this curve is included between vertical

asymptotes.

(11.) #=(! cos0), y=ad are equations to the curve

called the companion to the cycloid; find the points of

contrary flexure.

Let BDQ be the generating circle, centre 0, vertex D,

radius = a, DM-x, MP=y, tDOQ=d.
L 2
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Let 0=0, .'.#=0, #=0,
7T 7T

.". cos0= sin a.

'

I which increase

[ as a increases.

Let a=-> 0=?r, .'.cos0= 1, cos0=l,

Putting for 0, a similar curve is produced on the

other side of the axis of x.

dy f
Now =

dx

' a(ax)=-^--
(2rda?

Substituting a+ h, ah respectively for a; in this expres-

sion, we have

which is positive,

a{a(ah)} ah
which is negative ;

da? {2a(a-k)-(a-h)
2
}$ (a?-l

:. there is a point of contrary flexure when x=-a} y=a.
7T 7T

D0=a. Take OR= ~a, Or= -a, each = arc Dn,

^J.=7ra=arc DQJ5 ;
the curve will pass through/), R, A,

and R, r will be the points of contrary flexure.
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(12.) Show that the curve y4+ 2 axy
2 aa?= has a triple

point at the origin, and determine the position of the

tangents.

y
sp+ 2a(x-2yp+y2

) 3aa?=0, where P=-j-\
G.OC

(4y
3+ 4 axy)p=3 ax? 2 ay

2
,

3ax2 -2ay2

=--
,

=-> if #=0 and y=0.F 4y+4ewy
.*. there may be a multiple point.

Differentiating numerator and denominator,

6ax ayp
p __ --

^f- =-, if#=0andy=0.
12j/

J
/?+ 4a;rp+ 4ay

Differentiating as before,

6 a 4a?/<7 4a 2
^ j *-

24yjt>
2+ 12

j/
2
^ + 4a^+ 4

ajt? + 4
"where

*
//

2

_^_^^T__ /^_ if #=0 and v:=0.
Sap 4p22 l

Sax2 2 ay
2 2 ay

2

Also /?=-j 5
- =

^-, ifx=Q,

.. A,.p=- -=--=-<*, rfy=0,

.'. the origin is a triple point; and v tan0= =H--^ V2

and =--r= and also =00, .". the tangents cut the axis
v 2

L s=tan-1 (^) and tan" 1

(

---^
),

and at right-angles.
\ \/

'
V v'

at

* These repeated differentiations are sometimes tedious : they may,

however, in such cases as this, be simplified by considering p constant,

as no error will arise from that assumption. Thus, instead of this

equation, we should have had, by considering p in the previous one

6 a 4 op
2

,

1
constant. V ^ :

=
: > whence p +r= as above.

24 yp* + 4 ap + 4 op V 2
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(13.) In the diameter AB of a circle take a point C, draw

a chord AP and an ordinate PN, and CQ parallel to AP,

meeting PN in Q : trace the curve which is the locus of Q.

AB=a, AC=b,

NP=\//ax x2
, equation to Q,

CN : AN :: NQ : NP, or

x b : x :: y : \/axa?,

l ;\ / 2 / ;\
/a>x .

V x

the equation to the curve which is the locus of Q.

Let y=0, .'. x=b and=a; let x > a, y is impossible.

y has finite values positive and negative when x > b and < a.

Hence the curve will pass through C, Q, B, and form an

oval.

By the question no part of the curve can be to the left of C.

(14.) A rod PQ passes through a fixed point A ;
find the

equation to the curve described by P when Q moves in the

circumference of a circle of given radius, and trace the curve.

PQ=ff=length of rod, diameter

of O BQ=.a, AJB=b, qp position of D
( J^-

1

.,

rod when Q has moved along the

turcQq, AN=x, Nqy; thenNq
2=BN-NQ. Euc. iii. 35.

x)=(x V) (c x), i c=a+ b,

Let Aq=r, L A= 6,

r2 sin2 = r2 cos2 + (b+ c) r cos be,

r2 (b+ c) cosB-r= be,

:. r=-{(b+ c) cos

And / Ap=qp AqJR r, by giving successive values

to 6, and taking the corresponding values of r, the curve,
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which is the locus of P, will be traced. If BD be the posi-

tion of the rod when Q has described a ^O, PD=Q.
Hence the curve is an oval, whose axis PD=a.

(15.) The equation to the spiral of Archimedes is r=ad
;

trace the curve, and show that the origin is a point of con-

trary flexure.

Let 0=0, :. r=Q,

3-1416
0=45, r=a :

-4
= 27T,

r=a(3-1416),

r=a(4-7124),

r=(6-2832),
0^^oo , 7*^^00.

Take the angles, and draw the corresponding lines for the

values of r, and the curve may be traced.

Put for 0, and the values of r, being negative, must

be measured in a directly contrary direction.

Now 0=-
a

when r=0 or 0=0;
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fit)

and ~ changes sign immediately before and after the
dr

origin.
.'. the origin is a point of contrary flexure.

In the figure, if r commences its revolution above the

axis of x in the first quadrant, the branch of the spiral

ABCDEF will be generated. If negative values be given

to 6, and r be measured in a directly opposite direction, the

branch represented by the dotted line will be traced
;
and

we shall have the double spiral. If r commences its revolu-

tion upwards in the second quadrant, two branches will be

generated, similar to the others, but turned in a contrary

direction, and intersecting them in the horizontal and ver-

tical axes.

This spiral was invented by Conon : but Archimedes dis-

covered its principal properties.

If a fly were to move uniformly from the nave of a wheel

along one of the spokes whilst the wheel revolved uniformly

about a fixed axis, the fly would describe this spiral.

Teeth of this form are applied in the construction of

engines in which uniform motion in a given direction is

required.

(16.) Two points start from the opposite extremities of

the diameter of a circle, and move with uniform velocity in

the same direction round the circumference, their velocities

are in the ratio of 2 : 1. Determine the locus of the bisec-

tion of the chords which join the positions of the two points,

and find the polar subtangent of the curve.

Let the diameter AB= 2 a, and A be the

position of the point which moves with a

velocity equal to double that of the point

at B. Now when this latter point has made
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half a revolution, the former will have made a complete

revolution, and consequently the two points will coincide

at A. Again, the motions continuing, if we take any arc

A 0, and bisect it in D, C will be a position of the point

which started from A, and D the corresponding position

of the point which started from B. Draw the chord CD,

bisect it in P, and join OP, OC, OD.

Let be the pole, OP the radius vector =r, Z.AOP=6,
fi f) J-* W 1

then POD=-} -^-=cosP(9Z>, or-=cos-0, the equation
O (JJJ Qi O

to the locus of P.

To find the polar subtangent,

1 r .
1 dd 1

cos-0=-> sin-0- =->
3 a 3 dr a

dS 1 1 1

dr
m J

asin-0 a A/ l-cos2-0 a/\/l-^

:. r2 = -=the polar subtangent.
dr v 2 r*

To trace the curve, r=-a cos 0.
o

Put 0=0, then cos = 1, r=,

x/3 + 1 -v/3 + 1

0=45, cos 15= > r=a

2

0=135, cos45= ^> r=r
1

0=180, cos60=
2' r=^>
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(20.) If y=ax+ la? cy? ; show that there is a point of

inflexion when #=55 and y= ~-
(9ac+ 2 2

).OC aiC

(21.) Ify= c+ (x of(x Vfi ; show that there is a

double point when x=a, and y=c.
x2

(22.) If y=-g (a
2

a?); show that there are points of
(Z

a 5a
inflexion when x= => y=

x/6 62

(23.) If^=-.^-l, yssspLZy, y==a x a \x al (x V) (x c)

be three equations having no mutual relation, and x becomes

dij

infinitely great in each
; prove that in (1) y= oo

,
and -j-= oo

,

Omr

in (2) y=oo ,
and ^=1, and in (3) y=0, and ^=0.ax dx

(24.) If ^(x2
a?)=x* ;

show that the equations to the

asymptotes are y=+x, y=. x, and that the curve lies

above the asymptote : also show that the curve has two

branches touching the axis of x at the origin, both being in

a plane perpendicular to the plane of the paper, between

two asymptotes which cut the axis of x at right-angles

when x=+a, xa; show that beyond these asymptotes

the curve is in the plane of reference, and approaches nearest

to the axis of x when #=av2, again receding towards the

asymptotes whose equations are y=.-.x, and intersecting

them at oo in a point of inflexion.

(25.) If ^
3+ a^ 2a#2=0

;
show that the equation to the

2a
asymptote is y x-}- > that at the origin there is a cusp

o

of the first species, the two branches being above the axis

of x and concave to it, that the curve cuts the axis of x at
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right-angles at a point denoted by &=2a, where there is a

point of inflexion, beyond which, it approaches the asymp-
2a

tote whose equation is y x-\- ; show also that there is a
o

maximum ordinate whose length is ^-- v4, when x=-
o o

(26.) If r= => show that = > and that
v/0 v

there is a point of inflection when r=a v2, the curve being

concave towards the pole when r is less than a v2, and con-

vex towards it when r is greater than a v2~.

(27.) y=a+ a5(x a)^; determine the nature and posi-

tion of the cusp.

yA
(28.) y

2= being the equation to a curve referred
I* ~~"2/

to rectangular co-ordinates
;
show that the equation between

polar co-ordinates is r=atan0, and that the equation be-

tween the radius vector and the perpendicular from the pole

ar2

upon the tangent is p= / . n r== > show also how the
4

branches of the curve are situated with regard to the plane

of reference.

(29.) If 6=-- > show that a line drawn parallel to the
r a

prime radius or axis, at the distance a above it, is an

asymptote to the curve, that, when is +, the curve has

an interior asymptotic circle, and when 6 is ,
it has an

exterior asymptotic circle. Trace the curve, and show that

the rectilinear asymptote is a tangent to the asymptotic

circle.

(30.) The equation to the Cardioid is r=a (l + cos0) ;

trace the curve.
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(31.) If r=a : ) trace the curve, and show that
B sin 9

there is an asymptotic circle, radius= a, and that the curve,

coming from infinity, continually approaches the convex

circumference of the asymptotic circle on one side of the

diameter, and the concave circumference on the other side

of the diameter.

?/ / OC \ ft

(32.) The equation to a curve being - = \/ . r,'
^ Y' 3*" //*

show that it has asymptotes, at right-angles to the axis of x,

at points denoted by x=-\-a, x= a, and other asymptotes

cutting the axis of x at 45, and 135, respectively ;
that

there are minimum ordinates when x=-.a\/ \/2 + 1. De-

termine the value of these ordinates, and show the position

and direction of the branches of this curve.

(33.) y=a (ax a2
)"* ; determine the nature and posi-

tion of the singular point.

(34.) a?y
2+ a2y

2 a4=0 is the equation to a curve
;
show

that its asymptote coincides with the axis of ar, and that

there are points of inflexion above that axis at distances

/2 /2
equal to + a A /

-^>
and a A/ from it, and at dis-

tances equal H--= and -- =. from the origin of co-ordi-
v/2 A/2

nates.

(35.) If a? 3/3=a
3

;
show that the curve cuts the axis

of x at right-angles, at the distance a from the origin, that

at each of these points there is an inflexion, the part of the

curve between them being concave to the axis, the part to

the left of the origin being convex, and the part to the right

of the point denoted by x=.a, concave.
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(36.) If (x a)
5= (y xf ; show that the common tangent

to the two branches of the curve is inclined to the axis of x

at an angle of 45, that the curve cannot extend to the left

of the point denoted by x=a, and that, at the distance a

above that point, there is a cusp of the first species.

3 /
.) If y= A /(37.) If y= A /-

j

- be the equation to a curve ;

c%
show that there is a point of inflexion at the distance

6*

above the origin, and another in the axis of x, at the dis-

ci
tance - from the origin.

d^

sc

(38.) y=csin is the equation to the curve of sines;
Oj

show that, at all the intersections of this curve with the

axis of x, there are points of contrary flexure.

(39.) 3/
2=a2 +o?v 2a2 3? being the equation to a curve

;

show that its branches intersect the axis of x at angles

=tan-1 = and ta,n~ l
*/2, that there are four double

s$

points in the axes of co-ordinates, at the distance a from the

origin, and that the branches form two intersecting ovals.

(40.) If r2=a2sin20 ;
show that there is an oval in each

of the first and third quadrants, and that no curve exists in

either the second or fourth quadrants.

(41.) If the equation to a curve be a?+y2 2 Vaxy= Q
;

show that the axes are tangents, that p=Q and oo, and

that the origin is a double point.

(42.) If tan30= -> and tan0= define a curve;
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show that it has a maximum ordinate at the point denoted

To-

by x=a (1 1
,
and trace the curve.

(43.) Trace the curve, whose equation is 2 ay* + 3 a?y
2

+ 2a2x2=a4+x4
,
and determine the different angles at which

it cuts the axis of sc.

(44.) Transform the equation (a x} y
2=x? from rectan-

gular to polar co-ordinates, and trace the curve.

(45.) Trace the curve, whose equation is y
3

by
2 ax2

=0, and determine whether it has a point of contrary

flexure.

(46.) Prove that, in the logarithmic spiral, the equation

to which is r=aem9,
the tangent constantly makes the same

angle with the radius vector.

2/2 Q 2$
(47.) Trace the curve, whose equation is ^=- ? and

xz ax
ascertain the angles at which it cuts the axis of x.

(48.) If the hour and minute hands of a watch were of

equal length, and an elastic thread, so extensible as not to

impede their motions, were attached to the extremity of

each index, the thread representing a straight line of va-

riable length, from to the diameter of the dial-plate ;

determine the polar equation to the curve which would be

described by the middle point of the thread, and trace that

curve.

(49.) If perpendiculars be drawn to the diameter of a

circle, and from each of them a part be taken, measured

from the diameter, equal to half the sine of twice the arc

which it cuts off, the arc being measured from the same ex-

tremity of the diameter; show that the equation to the curve

M 2
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passing through the points thus determined is a lemniscata,

*27
-

whose equation is y=Va2
a?, and trace the curve.

a

/ / / C\^

(50.) Ify= -
j + l>; there is an isolated point, de-

0?

termine its position, and exhibit the form of the curve.

(51.) Ina^logtf x2
y+ y=0, show that the origin is a

point d'arret
;
and in y +ye~* #=0 a point saillant, the

branch corresponding to the negative values of x starting at

an angle whose tangent is 225.

(52.) Transform (&
2+y2

)
s=a2

y
4 to an equation between

polar co-ordinates, show that the pole is a quadruple point,

and exhibit the form of the curve.

(53.) Show that the curve, the equation to which is

ay
i
=.(x af(x b), has a singular point when x=a, a con-

jugate point if b is greater than a, and a double point if a

is greater than b.

(54.) ACB is a semicircle whose diameter is AB; draw an

ordinate NC and a chord A C, then NP being taken in the

ordinate, always equal to the difference between the chord

and the corresponding abscissa, show that the locus of P is a

parabola, and that there is a maximum ordinate when the

abscissa and corresponding ordinate are equal.

Q?X
(55.) Show that the curve, whose equation is y=, r.>

ab+ or

has three points of inflexion ;
and that, when x= vab, the

tangent is parallel to the axis of x.

(56.) If r=a0n ;
show that there are points of contrary

n

flexure when r=0, and r=a (
n2

rif; and that this equa-

tion comprehends those of the spiral of Archimedes, the
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lituus, the hyperbolic or reciprocal spiral, and an infinite

number of spirals.

(57.) Show how the trisectrix, the equation to which is

r=a (2cos0 1), may be used to trisect an arc or angle; and

explain the difference between the generation of this curve

and that of the cardioid.
'

(58.) Prove that the angle at which the logarithmic or

equiangular spiral, whose equation is r=a e
,
cuts the radius,

is constant, and that the radii which include equal angles

are proportional.

(59.) If x=a (d esind), and y= a (1 ecosfl) define

the trochoid; show that, at a point of contrary flexure,

(60.) A circle, which continues constantly in the same

plane, rolls, like a carriage wheel, along a fixed horizontal

line
; the curve described by a point in the circumference is

the cycloid. Find the equations = (- ) ,
and

dy \2a y/

dy_ /2a #\T

dx \ x i

(61.) Ascertain the loci of the transcendental equations

(1) y = tf
2 + COStf V 1,

(2) y= tf
2

:
v 1 a sec2#.

(62.) Show that, in curves referred to polar co-ordinates,
I *>si a

fj*&

s being the length of the spiral,
= Investigate the

do p
rn+2

equation between r and 6 when #2= > and between
*'* t //**

p and r when r=asin0.

(63.) If
,
and b

t
be two conjugate diameters of an ellipse,
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,, , ,, . eos2 9 sin2 # 1
the angle they make with each other, and s \-- = =

a* b- ri

the polar equation to the ellipse referred to the centre ;

prove that a,
2+ ^,

2=a2
-j-&

2
,
and a,l,=ab cosec^.

(64.) Trace the curve, whose equation is a^^aPlx2
,

and determine the number and nature of its singular points.

(65.) Let BAG be a parabola, A the vertex, and BG the

latus rectum ; in BG takeM andN equidistant from B and G,

draw MD and NE perpendicular to BG, to meet the curve

in D and E, draw CD cutting NE in P. Determine the

equation to the locus of P, and trace the curve.

(66.) A straight line DAE, at right-angles to the dia-

meter ACS of a circle, moves, parallel to DAE, along the

diameter, whilst a line which at first lies on the radius CA,

revolves with a uniform angular motion about C, intersecting

the other moving line in P
;
show that the equation to the

TfX
curve traced out by P is y=(a a?)

-tan
;
that the curve,

Z(i

which is the quadratrix of Dinostratus, has an infinite

number of infinite branches intersecting the axis of x, and

that the moving parallel is an asymptote to two infinite

branches. Show also that, if this curve could be geometri-

cally described, the ratio of the diameter of a circle to its

circumference would be determined.

(67.) A globe, whose radius is a b, vibrates in a hollow

hemisphere, whose radius is a, in such a manner that a great

circle of the globe coincides with a great circle of the hemi-

sphere ;
determine the curve traced out by the highest point

on the globe in one revolution, and exhibit the polar equa-

tion.
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CHAPTER XY.

CURVATURE OF CURVED LINES. RADIUS OF CURVATURE.

EVOLUTES.

Rectangular Co-ordinates.

If the equation to the osculating circle, or circle of curva-

di/

ture, be fl2=(x a)
2+ (y /3)

2
,
and if p be put for -/-> and

ax

q for
^>

R being considered positive when the curve is

concave to the axis of x, and negative when the curve is

convex ;
then

(1 +p2
)? l+p2 l+p2

A* J J '
y 7/_ M '

,
/ ft

'

7?

q q q

a. and /3, being the co-ordinates of the centre of the radius of

curvature, are the co-ordinates of the evolute of the curve.

If M=0 be the equation to the curve,

/du\ 2 d 2u du du d 2u /du\ 2 d2u

1 \dyi dx2 dx dy dxdy \dxl dy
2

R
( tdu\

2 /du\ 2 }%

l\dxi
+

\dj) }

The middle term of the numerator in this expression

vanishes when the value of u is the sum of two parts, one

involving x and the other y.

The distance from a point in the curve to the intersection

of two consecutive normals is the radius of curvature at that

point.

The normal to the curve is the tangent to the evolute.
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Polar Co-ordinates.

If H be the radius of curvature as before, r the radius

vector, the angle traced out by r, and p the perpendicular

upon the tangent,

_ dr

dp _ dr2 d 2r
1

<r*-\- & r
dti2 dd2

idr2

The semi-chord=p = -^ftw //2/*~ tit tJU I

Uti2 ~d&

To find the equation to the evolute to a spiral ; r and p

being taken as co-ordinates of the involute, r, and p, as cor-

responding co-ordinates of the evolute, we must eliminate

R, r and p from the four equations

Ex. (1.) To determine the radius of curvature at any

point in the common parabola.

y
2
=.kmx, the equation to the curve,

dy dy 2m
dx

'

dx y

d 2
y 2m dy 2m 2m 4m2

QJ\XJ'* y dos y y ij

2_ 4m2_ _
I

I P - *
I o" o -

1o
- a

y
1

y?

q y* 4m2
~"

mi

Since this expression for the radius of curvature diminishes

as x diminishes, R is least when .r=0, and then R=2m
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= half the latus rectum
; hence in the parabola the point of

greatest curvature is the vertex.

(2.) The equation to the rectangular hyperbola, referred

to its asymptotes is xy=m2
; find the radius of curvature.

dy dy m 2 m2

d 2
y 2m2x 2m2

i
4 x4 + x2

y
2 x2

-\-y
2

q a? 2m2 2m2

(3.) If the equation to a circle be x2 a (x

find the radius of curvature.

(Lij

y^+ayaxx2
, (2y+a)=a2x,

i
, rj2
-

_

(a+ 2y)
2
+(a-2x)

2
}

2x)
2
}
*_ (2 a

2
)*_ a

2 2

(4.) Find the radius of curvature to the hyperbola, and

determine the equation to its evolute.
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I2

y
2=

2"(#
2 2

),
the equation to the curve,

dy b2x dy b2x
-

2_~ + +

a4y
2 a2y

2
f^y^

b2
2

a

Hence Jt=
a?(x? a2)* ab

_ (a
2e2x2- a4)_ { a

2
(e

2a?- a2
) } f_a3

(e
2a? -

a*b a46 a4b

fe2x2_ a2\|
=^-

;
=radius of curvature.

ab

To find the equation to the evolute,

a x - a

a?b ab

ab b2
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/3=---'^
2~"2'

Z2

__
(^)

2
42

2

2
o~' ^~'~o"^J a2

.

tf
3 a

.'. (a)t (bj3)*=(a
2
-}-l

2
)s the equation to the evolute.

(5.) Show that, in the catenary, the radius is equal hut

opposite to the normal.

a ? -?

y=-(ea+ e
a
),

the equation to the curve,

X _X X X

dy a /ea e \ ea e

1

K

3
/ *\= _y*

a3 \ 2/ a
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But the normal N=y \/ 1 + n
= yV dx2'

Hence the radius of curvature is equal but opposite to the

normal.

(6.) Determine the radius of curvature and the evolute

of the cycloid.

Let AN=x, NP=y, CD=2a.

y x-\- \/2ay tfl---=versin
a a

> the equation to the curve.

= fr= ^*-y, ^=^.-1,
dx vy

l+p*=,
y

_.* dx2
y'
2 dx

TT (iHence = -

_^-__^.
' g~dx2 y2

:== (~) =2v/2ay-
\ w / aq y

Now CF*= CE*+EFi=CE*+CE*ED= y'2+ y (2a -y),

:. CF= A/2oy, :. J2=2(7^
T

=radius of curvature.

To find the equation to the evolute,

a

V
= 2x a= p (y /3)=

Substituting these values of a and ft for the co-ordinates

in the equation to the curve, we have

ft
-=versin
a

m
(1)
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Taking CA,= CD, and A,Bt , parallel to AB, as the axis of

the abscissae, and substituting /3,
2a for

/3, and tra a, for a,

ird being equal to AC; the origin will be transferred to A,,

and equation (1) will become

2 '=versin (TT

.'. =versin ! -> v 2 vers^=vers(7r .4).
a a

And v A
l
N

l =a,, and N
l
P

l '=.ft t ,
this equation to the evo-

lute is the equation to another cycloid originating at .4,, and

whose generating circle is equal to that of the given cycloid,

but moves in an opposite direction.

(7.) Show that, in the common parabola, the chord of

curvature through the focus is equal to four times the focal

distance ;
and find the length of the evolute in terms of

the focal distance and the distance between the focus and

vertex.

Let the focal distance SPr, the per-

pendicular from the focus upon the

tangent, SY=p, and DS=2SA=2 a=c.

Then, by a property of the parabola, SY2=SP-SA,

2
cr dp c dr 4j

2 dr 2 dp c

dr 8p
2 8 cr

Chord =2- = ^ = =4r=
dp c c 2

Again, y
2
=kax, the equation to the curve,

dy_2a 2_^ a2
"
dx y'

'

y*

+-
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-^i _ ^ ^y_ _ 2a ^_ 4a2

dx2 * dx 2
~

3

q y
3 4a2 a* SA

2SP%
Hence, length, of evolute s=Rc=--2SA

SA-*

The form of the evolute, which is a semi-cubical parabola,

is represented in the figure, by the lines ev, ev,.

(8.) Find the valxie of the radius vector in the spiral of

Archimedes, when the radius of curvature equals the chord

of curvature.

r=ad, the equation to the curve,

dr _
,
dr i

=a. But =
rffl dO p

fp y y2 j^Z
*A ^_ ^2 /p2 ^

* ^^
/y

*

/> p2
1

r* jpV
2= a?p

2
,

dp dp

-
dp

But =
p2

Hence

r2-
dr

0^2
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, , o^
Now, chord = 2p -=

r4

And, comparing this value of the chord with the value

of the radius of curvature, already determined, it appears

that radius = chord if (r
2
+a?)%=2r (i^+ a2

),
or

(9.) To find the radius of curvature in the semi-cubical

parabola.

the equation to the curve,
o d

di/ 2 2
di/ x2

*-j-=- > .'. =-f-= >

dx a dx ay

' __
'' + ~~~

ji o 2
_dy_2axy ax* p _ ay
~dz2

~
a2
y
2

a?y
2

4^
x* 3 4.^_3^4

N 2
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(10.) Find the radius of curvature and chord of curvature

in the cardioid. >

r=a (1 + cos0), the equation to the curve,

I , .
dd p-^= aswd, =

at) dr asmtf
,, .

But =

p 1

But v acosQ=r a,
2cos20=r2

1
A

-=^- -rs=a2-(rs-2ar+ o2
),2

P

Hence

dp

2 /v 2ar.
3

v/2ar

(11.) If ^ and R, respectively represent the radii of cur-

vature of an ellipse at the extremities of two conjugate dia-

3 7-4 a /TJ
meters : show that J$+R$= \ / -T~+ A / -

V b* V a^

Let Pp, Qq be two diameters, then if the

tangent at Q be* parallel to Pp, or if the tan-

gent at P be parallel to Qq, they will be con-

jugate diameters.

IJeiCP=r, tPCA,=0, CQ=r{ ,

(I)

2 dp 2r I
dp__'
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;. lt=r=-- =:(a
z+ b* H)

dp p ab

ab

dr, (gg+flg-r
, , -3

--T

dp, ab

.
-

(*)* (gft)

Hence

But since, in an ellipse, the sum of the squares of any two

conjugate diameters is equal to the sum of the squares of the

major and minor axes, therefore (2a)
2 + (2)

2
=(2r)

2

The form of the evolute of an ellipse is represented in the

figure.

(12.) Find the equation to the evolute of the logarithmic

curve.
X

y=ae", the equation to the curve,

dy - 1 - y d 2v 1 dy 1 y y
p=-T=aea '-=eu=-' q=:^=- --='?-=^-

ax a a dor

a

1 +p2 a
Now y 3=--

q a y y
8

16
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-r,
da. dy y da,

But = -/-= , y= a ,

dp ax a dp

da. /3(/3
2 -8 2

)*.
.'. a -=-- -- is the equation to the evolute.

dp 4

(13.) IfD be the point of intersection of the directrix and

axis of the common parabola, and PN, QM ^
be ordinates of corresponding points in the pa-

rabola and its evolute; show that DM=3DN.
The evolute of the common parabola is the

semicubical parabola.

The normal to the curve is the tangent to the evolute.

the equation to the common parabola,

/K

4
(3
2=-

(a 2 a)
3
,
..... semicubical parabola,

dx
y, y=. (#, x), equation to the normal,

Let y=0, then x,=a;+2a, the part cut off from the axis

of x by the normal to the curve.

Again 21og/3=log^+31og(a-24
t&..-l-,

.". a /3 -7^= 5
' the part cut off from the axis of x by

dp o

the tangent to the evolute.

Hence x+2a= -
> 3#+6a=a+4a,

o

.*. 3#=a 2a.
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EVOLUTES.

x=DN-a
141

:. DM-3a=WJV3a,
(14.) In an ellipse, e being the eccentricity, determine

the radius of curvature in terms of the angle made by the

normal with the major axis.

Normal PG=y /l+

Now y=- v/rt2 x2
, the equation to the ellipse,

dy b x

dx ci \/Q? x2

and =-

a2 x2

ba

Hence -K=

Now sin2(4=
_ 3.2

,

1 + ^r a-*

ba

a,
2sin2d)

I* ~"~" V v -^ t*
,

n . ,
^~"

-| *>**).
1 g2sinj^ 1 e^sm^

and, substituting this value of a2 e
2x? in equation (1),



142 RADIUS OF CURVATURE,

aa(l-2)f a (I_g

(1 -e2
) (1 -<?

2sin29)t (1
-

(15.) An inextensible cord AB is attached to a stone

at B, and a person holding the other extremity of the cord,

moves with it at right-angles to AB uniformly along the

straight line AC
',

it is required to determine the equation

to the curve described by the stone, and to find its evolute.

Let the person be supposed to move in the direction AC
until he arrives at any point T, while the

stone moves along the curve BP
;
the cord

will then be in the position PT, and since up
to this moment the stone has never been so

near to the line AC as it now is, the line PT produced

would not cut the curve BP ; hence PT, or the cord in any

position, is a tangent to the curve.

Let AN=x, NP=y, AB=a ; then

Subtangent^r=y , and NT2=PT2-tfP 2
,

or
dy

y
2

(

j
=a2

y
2
,

.'. ^-T-= Va2
^/
2
,

the equation

required.

Hence the curve is the tractory, and AC is its directrix.

Vdcc^1-| s=a,
OST

a form in which it is frequently given.

To determine the evolute :
( )

=-=- 1,

\dyl p2
y
2

P ~a2
y~
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dy y d 2
y

Again = ~^ > .-... _
dx2 (a

2-

a2
,+y,

/. /3=

dx

/,a=ic v a^

dj3 d/3 dx
Hence = = , -

da, dx da, yva2
y
2

<7a

dx a2 i

a* a a

J
the equation to the evolute. Hence the evolute to the

tractrix is the catenary.

(16.) The equation to a circle being y= (a
2 x2^ ; prove

that the radius of curvature equals a.

,.<- i*i

(17.) 2+ "72
= 1 being the equation to the ellipse; show

(a
2 e2x2)^

that the radius of curvature is --
; > where the eccen-_ ab

S^fi
tncity e=--

a?
(18.) In the cubical parabola, whose equation is y= ,-j

show that the radius of curvature is >
.

(19.) Prove that in the circle, parabola, ellipse, and hy-

perbola, or in any plane curve whose equation is of the

second degree, the radius of curvature varies as the cube of

the normal.



144 RADIUS OF CURVATURE,

(20.) The equation to the rectangular hyperbola is

y2 a? -f- a2= ;
show that the radius of curvature is

2\f
y and that the equation to its evolute is

(21.) Determine the radius of curvature to the curve

called the tractrix, the equation being y=--A/c
2

y
2

.

y

(22.) The polar equation to the lemniscata of Bernouilli

a2
is /

2= 2cos20 ; show that the radius of curvature is ^

(23.) Prove that the length of the arc of the evolute in-

tercepted between two radii of curvature is equal to the

difference between the lengths of those radii.

(24.) Show that in the common parabola, whose equation

is y
2=4a#, the radius ol curvature is greatest at the vertex,

that the radius of curvature at that point is half the latus

rectum, and determine the equation to the evolute.

(25.) IfN be the normal and R the radius of curvature

to a point in the ellipse ; prove that N3a?+Jtb4=Q.

(26.) r=/= being the equation to the lituus
;
show that

the radius of curvature is

(27.) If r=f(&), find an expression for the radius of cur-

vature, that is, prove that

drJK=r=-
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(28.) The equation to the logarithmic or equiangular spiral,

referred to p and r, is p=.mr ; show that the radius of cur-

9
vature is *-zy and that to this spiral the evolute is a similarmi

spiral.

y ifi

(29.) ^+T2= 1 being the equation to the ellipse ; show

that the equation to its evolute is (aa)s-f(fy3)=(a
2 52)s,

and exhibit its form and position with respect to the centre

of the ellipse.

(30.) In the hyperbola, the focus being considered as the

pole, the length of the perpendicular on the tangent is

*
-

;
show that the chord of curvature through the

.

focus is

(31.) The equation between p and r in the epicycloid

is (c
2

aF)p
2=c2

(r
2 a2); prove that the radius of curvature

c

(32.) The equation to the involute of the circle is

ad+asec~ l

(-J=(r
2 a2)* ; prove that its radius of curva-

ture is p, and that its evolute is a' circle whose centre is the

origin, and radius a.

(33.) The equation to the hypocycloid is x$+y%=a% ;

show that the equation to its evolute is

(*+$*+ (*-/J)*=2a*.

(34.) Referring to example 22, and letting R and R, re-

spectively represent the radii of curvature at the extremities
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of the major and minor axes of an ellipse, prove that the

2 72

length of the evolute is 4
(-j )

(35.) R being the radius of curvature, and s the length of

ds3

an arc of a plane curve : show that R= 5--
dx&y

(36.) Considering the earth to be an oblate spheroid, or

ellipsoid, 2 a its equatorial and 2 b its polar diameter, m and m,

respectively the lengths of an arc of 1 of a meridian in

two given latitudes X and X,, and considering these lengths

to coincide with the osculating circles through their middle

points ; show, by reference to Ex. 14, that the

equatorial diameter : polar diameter

:: {wi$sin
2X m,sin2

X,}^ : {m,$cos
2
X, m*cos2

X}^.

(37.) Show how the result of the last example would be

modified if one of the arcs of the meridian were measured

at the equator.

(38.) Let AP be a parabola, P any point in the curve,

draw the tangent PT, and the normal PG
; through T, the

point in which the tangent intersects the axis of abscissae,

draw TQ at right-angles to that axis, produce PG to meet

TQ in Q ; prove that the radius of curvature at P is equal

to GQ, and show the centre of the osculating circle.

(39.) The equation to a curve being x sec2j/:=0 j
show

that = 2x(3? 1Y* and that the radius of curvature
f

. (2 a? -I)
2

4x

(40.) If, in the common parabola, a point, determined

by x=3 a, be taken
; show that the part of the radius of

curvature below the axis of a; is 12 a.
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(41.) If ds represent the small arc between two points

(x, y), (x+dx, y-\-dy), in a curve, and R the radius of cur-

vature, investigate a general expression for that radius,

whatever be the independent variable ; that is, prove that

ds3

.#=-75 -; 7, r-> and thence deduce expressions for JR
d^xdy dz

ydx
when x, y and s be severally taken as the independent

variable.

(42.) Show that, if an inextensible thread were applied

to the evolute of a curve,, and were to be gradually unwound,

a fixed point in the thread would describe the involute or

original curve.

(43.) Prove that the tangent to the evolute is the normal

to the involute.

(44.) Prove that, when the radius of curvature is either

a maximum or a minimum, the contact is of the third order.

CHAPTEK XVI.

ENVELOPES TO LINES AND SURFACES.

Considering the evolute to a curve to be generated by the

ultimate intersections of consecutive normals, the evolute is

their envelope.

If f(x, y, a)=0 be the equation to a system of known

curves, intersecting each other in points determined by x

and y remaining constant whilst the variable parameter a

undergoes an infinitely small variation so as to become da,

the problem of finding the equation to the envelope resolves
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itself into that of finding an equation involving x, y and

constant quantities only, a being eliminated between the

equations f(x, y, a)=0, and/(ce, y, a+</a)=0.

If there are several equations of condition involving the

parameter, it is expedient to have recourse to the method of

indeterminate multipliers, as in example 2.

This method of finding envelopes may be applied to the

determining of the equation to the evolute of a curve.

Ex. (1.) A series of equal ellipses are so placed that their

axes are in the same straight lines, the ellipticities alone

being variable ; find the equation to the curve which will

touch all the ellipses.

Let the constant rectangle ab=m2
,

*> 2

-+^=1, the equation to the ellipse.
az b*

Here, a and b being variable, we must consider x, y and m
constant, and differentiate with respect to a and 6.

-n db 2^^__i . rf6__ _ aj

61 ~da~
'

~tf'da~~~rf' '''da~~'
db db b
+ b=Q, -!-= ---

da da a

Hence
a?y

2 a

~
'

:. 2xy=ab=m2
,
the equation to a rectangular hyperbola

referred to its asymptotes.

(2.) A straight line, whose length is /, slides down be-

tween two rectangular axes x and y ;
find the equation to
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the envelope of the line in all its positions, that is to the

curve to which the line is always a tangent.

Let a and b be the variable intercepts of the line on the

axes, then

X 7/

[-?-=l, the equation to the line,
a o

l
2

. Euc. b. i. p. 47.

Now, a and I being variable, we must differentiate consi-

dering x, y and / constant.

x da y x y--=> ^+ '

(2)

Multiply (2) by the indeterminate multiplier X.

\ada + \bdb = 0. Add equation (1).

Assnme -+Xa=0, and -+\b=Q, then

X

a
--..-- v- .", ,

OF

J_ A 7,2_0 I

b

x _a y _b_-

Hence x%+y=l%, the equation to the locus of the ulti-

mate intersections of the line.

(3.) To determine the curve whose tangent cuts off from

the axes a constant area.

o 2
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First, if the axes be rectangular, let a and b be the vari-

able parts cut off, and m2=the constant area.

tJG 1J

f-T= l> the equation to the line, . . (1)a

fib=w2
,

the area. .... (2)

Now, differentiating with respect to the variables a and b,

considering x, y and m constant, we have from (1)

x y db db b2x
~T+T9"T"=0

"

3~= 5~' and from (2)a2 b2 da da a2y

i_2m2
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I2x 2m2

Hence --= -. >
2= r-^-> I

a=

_ ,_
xsina V^Vsina

2m2 2m2 va3 -\/2w\/a;

isina v2ravyvsina s/y v sina

x y_xvyV sina yVxV sina_2va3^sina_ 1
I /

-

/*
I / /

- ~**j
a 5 v2m v cc v 2m v m-v/2

.'. a;y= :
> the equation to a hyperbola whose asymp-

2 sina

totes are the oblique axes Ax, Ay.

(4.) Determine the equation to the curve which touches

all the curves included under the equation

a?
w=#tan0 -- --

5 ? the variable being 6.
4h cos2 8

Differentiating with respect to 6, considering x, y and h

constant,

_ x sin0
=X

'cos2 6 16A2cos4
=
2T cos0'

oz
tan0= ,

a?
:. cos26= > 4A cos20=

4Acos2

Hence y=2A jr A=A jj> the equation required.
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If, in this problem, we consider h to vary as well as 6,

and if some constant area m2=A2 sin3 0cos0 ;
then we have

4A cos2 B

a?
=i# tan0

4m cost

4m

Differentiating with respect to 0, considering x, y and m
constant,

2 3 3,

0=;rsec2 tan~*0-sec2 0, tanT0=l,4m 2 8m
i 8m 64m2 , 512m3

tan*0=-^ > tan0= ? tan^0=-

Whence by substitution in (1) we have

_64m
2 a? 512m3 64m2 128m2

a n .

~~~
~t

_192m
2-128m2

_64m
2

. _/4\
s

2

~27x~~
~

27a?
' ' '

f
y~

\37
m '

(5.) Two diameters of a circle intersect at right-angles ;

find the locus of the intersections of the chords joining the

extremities of the diameters, while the diameters perform a

complete revolution.

Let AB, Ab be two semi-diameters at right-

angles, 2a the diameter of the circle, A the

origin of co-ordinates, r=AP the line joining ^^ _.

the origin and point of intersection of the \^ V

chords. Then

AP r . ,.,__ 1 a
r=--

J ^ . j=AB a v/2 v2
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Now, this problem is the same as that of determining the

curve to which the chord at its middle point shall be con-

stantly a tangent; and y=mx + rv m2+l is the equation

to a straight line, r being the perpendicular upon it from

the origin.

Differentiating this equation with respect to m, consider-

ing x, y, and r constant,

m
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Multiplying the last equation by the indeterminate multi-

plier X, and adding, we have

(a?+Xa a) da+(y+Xb V) db=Q,

.'. \a-\-x a=0, (!) ^b+y b=0, . . . (2) ; whence by

2C *U

eliminating X we have =T'
a o

Again (1) \a2+ax 2=0, (2) Xb2+by J2=0,

/. X(a
2+b2)+ax+by-(a2+b2

)=0,

^- 1 -^^'-(3)c

a2x I2x , 70 . x ax,
But ax+by=--1

--=(a?a a a

Abo

Hence X=l^ +
Substituting in

(1), (2),
C

a- (*?+yrf= -(*-), b-
c c

C

C

=(xa)2+(yb)2
,

or

+ z2 2c (x
2+y2

)$=r
2

c2 is the equation to the

envelope of the system of spheres.

(7.) Two straight lines
p.

and
-,

of variable length, are

drawn at right-angles to the axis of x, one of them v passing
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through the origin of co-ordinates : now if they vary in such

a manner that the rectangle contained by them is a constant

quantity equal to I2
; determine the curve to which the

straight line passing through their upper extremities is

always a tangent.

Let,AJ)= t>
) C=p, A=2a, AN=x, NP=y. Then

PN EG AD

AT+x AT+ 2a AT

y-AT=vAT+vx, and

(y-v}AT=vX,

yv yfj.
I2

x
vx inx 2 ay a ux2ay

Hence-=--> :.
^ .=---> oryv yp _*>_ yp-

2 .

where
fj.

alone is to be considered variable.

Differentiating with respect to
p.,

we have

ay
y

/

Hence, by substitution, = -f i2 (^ 2 a),x x

a2y
2=b2

(2ax-a?), or

I2

y
2= (2axx2

),
the equation to an ellipse, referred to

fl

the vertex.
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(8.)
If a series of parabolas be included under the equa-

tion y
2=a(xa), a being the variable parameter; show

that they will all be touched by the two straight lines de-

termined by the equations y=+-x, y-^ and draw
'-. 2i

these lines.

(9.) Show how the method of determining envelopes may
be applied to finding the evolute of a curve, and apply it to

determine the evolute of the ellipse, whose equation, re-

x2 y2

ferred to the centre, is ^+ 7-= 1.
a1 o*

Equation to evolute (act)%+(b(3)$=(a
2 12

)$.

(10.) Prove that the curve which touches all the straight

tvn

lines determined by the equation y=.ax-\ > where a is

variable, is the common parabola.

(11.) A system of ellipses, with coincident but variable

axes, is subject to the condition that a2+ b2=m2
,
a and b

being the major and minor axes; determine the curve which

shall be the envelope of the system.

(12.) If shot be discharged from a cannon with a con-

stant velocity, but at various angles of elevation, they

will describe the parabolas included under the equation

x2
y=ax (1+a

2
) j-i a being the variable parameter. Show
i C

that the curve which will touch all these parabolas is itself

tf
2

a parabola whose equation is y=c j

(13.) Considering the envelope to be formed by the inter-

sections of straight lines ; show that the problem
" to deter-

mine the equation to the envelope" is the inverse of the
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problem
" to determine the equation to a tangent to a

curve."

(14.) If
/?,

be a perpendicular of constant length from the

origin upon the straight lines denned by yz=ax+p l (a
2+ 1)*;

show that the envelope of all these lines is a circle whose

radius is/>,.

(15.) If a surface be produced by the continued intersec-

tion of planes represented by the equation \-^-\ =1,
a o c

where ac=m3
; a, b, c being variable, and m3

constant]

(Vfi

\

I

(16.) A straight line, cutting from two straight lines

which meet in any angle, two segments whose sum is a, is a

tangent to a curve
; prove that that curve is a parabola, and

trace it.

(17.) If on one side of a horizontal straight line AR an in-

definite number of parabolas of equal area be described from

a common point A, with their axes perpendicular to AR,

the equation to this system of parabolas is a.y=%o&dsx or
2

,

where a is variable
; prove that the curve which will touch

them all is an equilateral hyperbola whose equation is

25

xy=-^a
2
,
AR and a perpendicular to it from A being its

asymptotic axes.
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CHAPTER XVII.

MISCELLANEOUS EXERCISES.

(1.) Prove the ordinary rules for differentiation.

(2.) Explain the difference between explicit and implicit

functions.

(3.) Define and illustrate the terms "
limit,"

" differen-

tial,"
" differential coefficient."

(4.) Explain the difference between algebraic and trans-

cendental functions.

(5.) Investigate the differentials of w=sin#, w=wtan0,
u=ax

, u=\ogx.

(6.) Prove Taylor's Theorem, and from it deduce Stirling's

or Maclaurin's Theorem, and the Binomial Theorem of

Newton.

(7.) If y= e*sin# ; show, by means of the theorem of

Leibnitz, that ^=dxn \ 4

(8.) In what manner may the value of a fraction be

determined when its numerator and denominator vanish

simultaneously ?

(9.) If u=f(x) ; show that u is a maximum or minimum

when an odd number of differential coefficients becojliing=0,

the differential coefficient of the next succeeding order is

negative or positive.

(10.) Deduce the equation to a straight line, y=mx+ b,

and show that the equation to a perpendicular to it is

1

y -- x+ b.m
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(11.) Show that the equation to a straight line, which

intersects the axis of x at a distance a from the origin of

co-ordinates, and the axis of y at a distance b from that

. y x
origin, is H =1.

b a

(12.) Show that the equation to a tangent to a curve, re-

cf:i/

ferred to rectangular co-ordinates, is (y, y)=y- (x t x\
tl'*C

(13.) If AT and AD be the intercepts of the tangent on

the axes of x and y respectively ; prove that AT=y ^-x,
ay

and AD= v z-r-> and determine the equation to the
ax

normal.

(14.) Determine the differential expression for the sub-

tangent, subnormal, tangent, normal, perpendicular on tan-

gent, and the tangent of the angle which the tangent makes

with a line from the origin.

(15.) If u=f(x,y); prove that du=( } dx+
(<-j-\

dy,

j ^ 4.and that -=
ayax axay

(16.) ~iiu=f(y, z\ where y, z, and consequently u, are

functions of x ; show that du=(- 1 ^y+(~7~)
dz.

(17.) Determine the conditions upon which a function of

two independent variables is a maximum or minimum.

(18.) Determine the differential expression for the area of

dy
a plane curve, and if s be the length, and =/> ; prove
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(19.) If S be the surface and V the volume of a solid

generated by the revolution of a curve round its axis ; show

that4^=^2
,

and
<

^.ax dx

(20.) If r and r, be the radii of the greater and smaller

ends of the frustrum of a right cone, and a the slant height ;

prove that the area of the frustrum is ira (r-fr,).

(21.) If r be the radius vector, p the perpendicular on

the tangent, and 6 the angle swept out by the revolution of r

~\ 72 1

round the pole S ;
show that ^=.u2+(- } , where u=-:

p
2 \dt)/ r

and that =
dr r (r

2
^

(22.) If in polar curves p be the length of the perpendi-

cular upon the tangent j find the value of p in the circle,

parabola, ellipse, and hyperbola.

(23.) Define the rectilinear asymptote and the asymptotic

circle.

(24.) Define conjugate points, double points, cusps, and

points of contrary flexure, and show that a curve is concave

d2v
or convex to the axis according as y and -7^ have the same

or different signs.

(25.) Prove that, in spirals, the curve is concave or convex

towards the pole, according as ~ is positive or negative.

(26.) If A be the area, and s the length of a plane curve
;

dA dA 1 ds
prove that -=y, and -=^r

2
,
-=

, ds r
and -j-= -

dr (ri_ rfl\k
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dQ
(27.) Prove that, in spirals, the subtangent = r2

(Ai

= ? and show how to draw the asymptote to a

spiral.

(28.) Explain what is meant by the osculating circle;

and show that the evolutes of all algebraic curves are recti-

ficable.

(29.) Explain the theory of the different orders of contact

of plane curves ; point out the exceptions to the rule that

every curve is cut by its circle of curvature, and show how

these exceptions apply to the ellipse.

(30.) Explain the difference between Taylor's and Mac-

laurin's Theorems, and point out the circumstances under

which the former sometimes fails.

(31.) Investigate Lagrange's* Theorem, and apply it to

determine a general law for the inversion of series by means

of the equation x=ay+ by
2+ cy

3+ dy
4
-f &c.

(32.) Apply Lagrange's Theorem to the determination

of the four first terms of the development of y
m

,
when

ya+xyn
; and find the general term in the expansion of

xm in a series of powers of cos 0, when x+ -= 2 cos6>.

f/' u i dii \

(33.) If u= ~ (x y\ - s> x being the inde-
ed \ dx I 1 &l

*
Ify=z + x<J>(y), and \fu=f(y), /and being any functions what-

ever, then

+ &c -

p 2
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pendent variable
;
show that, when x becomes cos0, and d is

2

made the independent variable, u= [-rjx +y} cosec20.
\dO I

(34.) Explain 'exactly the mode in which the following

Curves are generated, construct them, and thence derive

their equations : namely, the circle, parabola, ellipse, hyper-

bola, cissoid of Diocles, conchoid of Nicomedes (superior and

inferior), cycloid, epicycloid, lemniscata of Bernouilli, quadra-

trix of Dinostratus, involute of the circle, catenary, tractory,

elastic curve, witch of Agnesi, curve of sines, cardioid, tri-

sectrix, logarithmic or equiangular spiral, spiral of Archi-

medes, hyperbolic or reciprocal spiral, lituus, parabolic

spiral.

(35.) Show what kind of curves are included under the

equations y
2=mx+ nx'2

,
r=a sin n 6, ra cos 6+ 1, r-=.a 0",

r a sin n 6+ 1 sin n,8+ c sin n,,9+ &c. respectively.
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